

Unicenter

TCPaccess Communications Server
Assembler API Concepts

Version 6.0

The Software That Manages eBusiness

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by the
copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: API Overview
References ..1–2
Transport Service Modes ...1–3
Background ...1–4

ARPANET ..1–4
TCP/IP ..1–4
Corporate Networking Technology..1–5

OSI Reference Model..1–5
Open Systems Interconnection ..1–5

The Seven Layer Model ...1–6
Layer Interaction ..1–6

Internet Protocol Suite ..1–9
Major Application Layer Protocols..1–9

OSI Terminology...1–11
Transport Services and Protocols ..1–11
Service Access Points (SAP) ...1–11
Connections ..1–12
Primitives..1–12
Service Data Units ...1–12

Transport Layer Services ...1–13
Modes of Service..1–14

Connection-Oriented Transport Service (COTS) ...1–14
Transport Connection Establishment ..1–16
Data Transfer...1–18
Transport Connection Release..1–21
Endpoint States and Service Sequence ..1–22
Connectionless Transport Service ..1–24

Transport Layer Addressing..1–26
Internet Domain Addressing ..1–26
Connecting to an Internet Address ..1–29

Contents iii

Chapter 2: Concepts and Facilities
API Organization..2–2

Relationship Independence..2–2
Service Request Processing ..2–3
API Components ...2–4

Concepts and Terminology ...2–5
Modes of Service..2–5
Endpoints and Access Points ...2–6
Connection Strategies..2–7
Data Transfer Modes...2–10
Disconnect and Orderly Release ...2–11
Service Requests and Parameters..2–11
Transport Protocol Options..2–17
The Transport Service Parameter List ..2–17

Establishing a Session with a Transport Provider ...2–23
Session-Level Services ..2–23
Application Programs and Transport Users..2–25

Connection-Mode Service..2–27
Local Endpoint Management...2–28
Opening and Closing Endpoints ...2–29

Opening an Endpoint ..2–30
Closing an Endpoint ..2–32

Passing Control of an Endpoint...2–33
Binding and Unbinding Addresses ..2–34
Retrieving Protocol Addresses ..2–37
Miscellaneous Functions ..2–38

TINFO—Getting Basic Protocol Information ...2–38
TOPTION—Manipulating Protocol Options..2–39

TUSER—Specifying or Changing an Endpoint User ID ..2–41
Connection Establishment..2–42
TCONNECT—Initiating a Connection...2–43
Single-Threaded and Multithreaded Servers ..2–44

Single-Threaded Servers..2–44
Multithreaded Servers ...2–46

Data Transfer..2–48
TLI vs. Sockets Mode ...2–48
Connection-Oriented Transport Service (COTS) Data Transfer Functions..................................2–48
Transporting User Data ...2–49
Sending and Receiving Data...2–51
User Data Length..2–53

Connection Release ...2–53

iv Assembler API Concepts

TDISCONN—Initiating Abortive Release ..2–54
TCLEAR—Return Disconnect Information ..2–54
Using TDISCONN and TCLEAR During Connection Establishment ..2–55
TRELEASE—Orderly Release Procedure ...2–55
TRELACK—Checking for Orderly Release ..2–56

Connectionless-Mode Service ...2–57
Local Endpoint Management...2–57

TOPEN—Opening an Endpoint...2–58
Using TBIND with Connectionless Mode...2–59
Terminating a Connectionless Mode Endpoint ...2–59
Using TADDR to Retrieve Addresses ...2–59
Specifying Protocol Options ...2–60

Data Transfer..2–60
Connectionless Service with Associations ..2–63

ASSOC—Requesting Association-Mode Service ..2–64
Establishing Client Associations ...2–65
Establishing Server Associations...2–66

Local Endpoint Control ...2–67
TCHECK ...2–68
TERROR—Abnormally Completed Service Requests..2–69
TEXEC—Executing a Fully-initialized TPL ...2–69
TSTATE—Return Endpoint State..2–70

Declarative Macro Instructions...2–70
The APCB Macro Instruction...2–71
The TDSECT Macro Instruction ..2–71
The TEXLST Macro Instruction ...2–71
The TEVNTLST Macro Instruction ...2–72
The TPL Macro Instruction ..2–72

Endpoint States and Function Sequences..2–73
Endpoint Functions ...2–73
Endpoint States ..2–73
State Transitions ..2–75
Function Sequences ...2–79

Chapter 3: Program Synchronization and Control
Task Synchronization Requirements ...3–2

Typical Processing Flow...3–2
Modes of Operation..3–5

Operating Mode Differences..3–6
Synchronous Operation..3–8

Contents v

Asynchronous Operation ...3–9
Asynchronous Operation Using ECBs ..3–11

Mixing Synchronization Modes ..3–17
Specifying and Using Exit Routines...3–18

How Exit Routines Are Specified..3–18
TPL Exit Routines ..3–18

TEXLST and TEVNTLST Exit Routines...3–19
How Exit Routines Are Called ..3–20

Synchronous Exit Routines ...3–20
Asynchronous Exit Routines ..3–23
Exit Routine Parameter List ..3–26

How Exit Routines Are Used...3–27
Exit Routine Summary...3–27
Register Usage Summary ..3–29
TPL Completion Exit..3–30
Protocol Event Exits and ECBs ...3–31
SYNAD/LERAD—Synchronous Error Recovery Exits ..3–37
TPEND Exit Routine or ECB...3–42
APEND Exit Routine..3–44
Deriving Context in Exit Routines ...3–46

Handling Errors and Special Conditions ..3–47
Macro Information ..3–47
General Return Codes...3–48
Conditional Completion Codes ...3–49
Recovery Action Codes...3–50
Specific Error Codes ..3–51
Diagnostic Codes ...3–51
AOPEN and ACLOSE Errors...3–52

Application Program Organization ...3–53
Multitasking Operation Rules...3–54
Multiple Address Spaces ...3–55
24-Bit and 31-Bit Addressing ..3–55

Appendix A: Endpoint State Transitions
Defined Endpoint States ...A–1
The State Transition Tables ..A–2

Endpoint States for TSCLOSED, TSOPENED, and TSDSABLED ...A–3
Endpoint States for TSENABLD, TSINCONN, and TSOUCONN..A–4
Endpoint States for TSCONNCT, TSINRLSE, and TSOURLSE...A–6

vi Assembler API Concepts

Appendix B: Time-Sequence Diagrams
Diagram Labeling .. B–1

Synchronous and Asynchronous Modes ... B–2
Completion and Error Events .. B–2

Diagrams... B–3
Local Endpoint Management (Initialization) ... B–3
Client Connect Sequence (Rejected)... B–5
Server Connect Sequence (Accepted) .. B–6
Server Connect Sequence (Rejected) .. B–7
COTS Receive Data Sequence... B–8
COTS Send Data Sequence.. B–9
CLTS Receive Data Sequence.. B–9
CLTS Send Data Sequence .. B–10
CLTS Datagram Error Sequence... B–11
Orderly Release Sequence ... B–12
Abortive Disconnect Sequence ... B–14
Simultaneous Disconnects... B–15
Local Endpoint Management (Termination) .. B–16

Protocol Address ...C–1
Transport Layer Address—Port Numbers..C–2
Network Layer Addressing—IP Address...C–3

Expedited Data...C–4
Sending Expedited Data...C–4
Receiving Expedited Data ..C–4

Disconnect Reason Codes...C–5
API-Initiated Protocol Actions...C–6
Protocol Events Resulting In API Activity...C–7

Initial SYN Arrives (TCP)..C–7
SYN/ACK Arrives in Response to a Previously Sent Initial SYN(TCP) ..C–7
Data Arrives (TCP/UDP)..C–7
Acknowledgment for Sent Data Arrives (TCP)..C–7
Urgent Data Arrives (TCP)..C–7
ICMP Message Arrives ..C–8
A TCP RESET Arrives..C–8
A FIN Arrives (TCP) ..C–8

Data Sets..D–1
Sample Program .. E–1

Index

Contents vii

Chapter

1 API Overview

This chapter provides an introduction and overview to the Unicenter TCPaccess
Communications Server Application Program Interface (API).

It includes these sections:

■ Background—Describes the history of multi-vendor computer networks,
including a description of ARPANET, internet, corporate networking
technology, and international standards

■ OSI Reference Model—Describes open systems interconnection concepts and
the internet protocol suite

■ OSI Reference Model—Defines common OSI terms and describes their use,
including service access points, connections, primitives, and service data
units

■ Transport Layer Services—Describes the types of services available for
transporting data between networks, as well as modes of service and
transport layer addressing

The Unicenter TCPaccess API is a programming interface between application
programs and communication subsystems based on open network protocols. The
API lets any application program operating in its own MVS address space to
access and use communication services provided by an MVS subsystem that
implements this interface. Unicenter TCPaccess provides communication
services using TCP/IP protocols, and is an example of such a subsystem.

This guide describes an interface to the transport layer of the Basic Reference
Model of Open Systems Interconnection (OSI). Although the API is capable of
interfacing to proprietary protocols, the internet open network protocols are the
intended providers of the transport service. This document uses the term open to
emphasize that any system conforming to one of these standards can
communicate with any other system conforming to the same standard,
regardless of vendor. These protocols are contrasted with proprietary protocols
that generally support a closed community of systems supplied by a single
vendor.

API Overview 1–1

References

References
For information about the Basic C Library and Socket API, refer to the Unicenter
TCPaccess Communications Server C/Socket Programmers Guide. The RPC interface
to the API is described in the Unicenter TCPaccess Communications Server
RPC/XDR Programmer’s Reference.

Refer to the these documents for additional information:

■ TCP/IP – Architecture, Protocols, and Implementation, Sidnie Feit, McGraw-Hill,
1993.

■ DDN Protocol Handbook, Volume 2: DARPA Internet Protocols, DDN Network
Information Center, SRI International, Menlo Park, California, 1985.

■ Handbook of Computer Communications Standards, Volume 1: The Open Systems
Interconnection (OSI) Model and OSI-Related Standards, William Stallings,
Macmillan Publishing Company, New York, 1987.

■ Handbook of Computer Communications Standards, Volume 3: Department of
Defense (DOD) Protocol Standards, William Stallings, Macmillan Publishing
Company, New York, 1987.

■ Information Processing Systems, Open Systems Interconnection, Basic Reference
Model, ISO-7498 and ISO-7498/Add.1, International Organization for
Standardization, Switzerland, 1984.

■ Information Processing Systems, Open Systems Interconnection, Transport Service
Definition, ISO-8072 and ISO-8072/Add.1, International Organization for
Standardization, Switzerland, 1986.

■ Internetworking with TCP/IP: Principles, Protocols, and Architecture, Douglas
Comer, Prentice Hall, New Jersey, 1988.

■ The Open Book: A Practical Perspective on OSI, Marshall T. Rose, Prentice Hall,
1989.

■ UNIX System V Release 3 Network Programmers Guide, P/N 307-230, AT&T,
1986.

■ UNIX System V Release 3 Programmer's Reference Manual, Section 3N, P/N
307-226, AT&T, 1986.

1–2 Assembler API Concepts

Transport Service Modes

Transport Service Modes
This document defines connection-mode and connectionless-mode protocols that
support two basic modes of transport service:

■ Connection-mode Protocols

 With connection-mode protocols, a virtual connection is established, over
which an ordered, reliable stream of data bytes or messages can be
transferred until the connection is released. Each connection is associated
with a specific transport user.

■ Connectionless-mode Protocols

 Connectionless-mode protocols provide a stateless form of data transfer
where each message or datagram is unrelated to previous or successive
datagrams, and can be received from or sent to any transport user.

Unicenter TCPaccess API is compliant with ISO International Standard 8072
(CCITT X.214) and ISO 8072/Add.1, which specify the transport service
definition for connection-mode and connectionless-mode service. The semantics
of the interface were derived from the Transport Layer Interface (TLI) that is
used by AT&T UNIX System V.3 for communicating with networks based on the
OSI Reference Model. The mechanics for synchronizing with other MVS tasks
and handling exceptional conditions are derived from IBM’s Virtual
Telecommunications Access Method (VTAM) to simplify learning the rudiments
of the interface. Therefore, knowledge of VTAM application programming is
helpful.

Note: The basic interface is implemented for application programs written in
assembler language, and a working knowledge of IBM Basic Assembler
Language (BAL) is assumed.

A library of basic interface functions is also provided for applications written in
C language. This library implements the C-language equivalent of the basic
functions defined for assembler language. For application programs that are
derived or ported from BSD UNIX, a library of functions based on BSD sockets is
also provided. Subroutine libraries for other high-level languages will be
developed as the need arises.

API Overview 1–3

Background

Background
This section provides a brief description of how multi-vendor computer
networks began and how they evolved to what they are today.

ARPANET

Research into multi-vendor computer networks began in the mid 1960s, and the
first experimental network was deployed in 1969. This effort was sponsored by
the Defense Advanced Research Projects Agency (DARPA) and led to the
development of the largest network of computer systems in the world today. The
original network, known as ARPANET, is still in operation.

The original communication protocols used on ARPANET have since been
replaced by more advanced protocols that not only permit larger and more
sophisticated networks, but also permit separate networks with their own
administration to be connected together into a super-network. This network of
networks has come to be known as the Internet and currently consists of tens-of-
thousands of computer systems connected to thousands of interconnected
networks. Any computer system on any one of these individual networks has the
capability to communicate with any other computer system on some other
network halfway around the world.

TCP/IP

The set of communication protocols that evolved out of this experimental effort
is known as the Internet (TCP/IP) protocol suite. In 1983, the Department of
Defense mandated that all DoD commands and agencies use these protocols for
interconnecting computer systems over long haul facilities, and the Defense Data
Network (DDN) was developed to provide wide-area service. At the same time,
the internet protocol suite was integrated into the University of California
Berkeley Software Distribution (BSD) of the UNIX operating system. Since BSD
UNIX is the basis for many workstation and mini-computer operating systems,
the internet protocol suite was rapidly propagated throughout the educational,
scientific, and engineering community.

1–4 Assembler API Concepts

OSI Reference Model

Today, the Internet protocol suite is the most widely used set of protocols for
interconnecting heterogeneous systems. Hundreds of vendors offer products
based on these protocols, including all of the major computer system
manufacturers. Also, as rapidly as new transmission media and network
technologies emerge, Internet protocol implementations are developed to
support them. Virtually every form of local and wide-area transmission is
supported, ranging from simple serial links to local area networks based on
Ethernet, token-ring, and token-bus designs, to national and international
packet-switched networks using terrestrial and satellite links. Even nodes
operating over amateur radio links can be connected to the Internet.

Corporate Networking Technology

Computer networking technology has spread beyond governmental and
educational institutions into the commercial business sector. As corporations
shift the emphasis from centralized control to decentralized management of
information resources, computer networking has become a critical component of
a business’ operation. With the availability of inexpensive workstations and
personal computers, applications are becoming widely distributed and
computing resources are becoming specialized and diverse. Coupled with the
need to integrate all departments into the corporate network and to automate the
business process, heterogeneous networking and interoperability have never
been so important.

While proprietary network protocols can provide sophisticated and
comprehensive services to a homogeneous community of systems, they are
inappropriate for large networks of multi-vendor systems due to their lack of
universal implementation. Therefore, the trend is away from proprietary
networks and towards open networks that can interconnect a variety of
computer systems. Use of open networks eliminates the reliance on a single
vendor for services and equipment and makes it possible to rapidly adapt to
changing technology.

OSI Reference Model
To properly understand the role of the API and the services it provides, a brief
overview of the OSI Reference Model may be helpful. The Reference Model is
defined by ISO International Standard 7498 (1984). Addendum 1 (1987) expands
the definition to include connectionless-mode transmission.

API Overview 1–5

OSI Reference Model

Open Systems Interconnection

Proprietary networks such as SNA tend to be closed, even though they may have
been conceived as open. Each manufacturer develops its own set of conventions
for interconnecting its own equipment and refers to these conventions as its
network architecture. Recognizing the need to interconnect systems from many
different manufacturers, ISO created a subcommittee with the objective of
developing international standards required for Open Systems Interconnection
(OSI). Their initial effort resulted in the development of a standard model of
architecture that would constitute the framework for the development of
standard protocols. This architectural model is known as the Basic Reference
Model of Open Systems Interconnection.

The Seven Layer Model

The OSI Reference Model generally is depicted as a vertical stack representing
the seven layers of the model. The following diagram shows this model:

The OSI Reference Model

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

The entire stack represents the OSI environment on the local system, and each
layer represents a subsystem within the local system that implements the
functionality of the given layer. The application layer is usually on the top, and
the layer that represents the physical media is on the bottom. Systems that
conform to the Reference Model are called open systems. Open systems are
internally independent but provide common external services via standardized
protocols publicly defined for each layer.

1–6 Assembler API Concepts

OSI Reference Model

Layer Interaction

An entity operating within a layer (or subsystem) communicates with a peer
entity operating within the same layer on another system, and using services
provided by the lower layer, they cooperate to provide enhanced services to
entities operating in the layer above. The basic idea of layering is that each layer
adds value to services provided by the set of lower layers in such a way that the
highest layer is offered services to run distributed applications. Layering thus
divides the total communication process into smaller processes.

Another basic principle of layering is to ensure independence of each layer by
defining services provided by the layer to the next higher layer, independent of
how these services are performed. This lets changes be made in the way a layer
or set of layers operates, provided they still offer the same service to the next
higher layer.

Except for the highest layer, which operates for its own purpose, entities
distributed among the interconnected open systems work collectively to provide
specific services to entities in the layer above. Cooperation between entities
within one layer is governed by protocols that precisely define how the entities
work together using the services of the lower layer.

This list briefly describes the function of each layer and the basic services it
provides to the layer above:

Application Layer
(Layer Seven)

Provides a means for the application programs to access the OSI environment,
and provides the distributed information service appropriate to the application.

The following are the basic application services:

■ Identify and authenticate communication partners

■ Determine adequacy of resources and quality of service

■ Establish agreement on error recovery procedures, control of data integrity,
and privacy mechanisms

■ Select dialogue discipline and identify constraints on data syntax

■ Provide synchronization and data transfer

Presentation Layer
(Layer Six)

Provides the representation of information that application entities either
communicate or refer to in their communication. This layer is concerned only
with the representation of data (that is, syntax) and not its semantics.

Provides session services plus the following facilities:

■ Negotiation and recognition of syntax

■ Transformation of syntax, including data transformation, formatting and
compression

API Overview 1–7

OSI Reference Model

Session Layer
(Layer Five)

Provides the means necessary for cooperating presentation entities to organize
and synchronize their dialog and to manage their data exchange.

The basic session services are:

 ■ Establish, synchronize, and release session connections

■ Exchange normal and expedited data

■ Manage dialogue interaction and report exceptions

Transport Layer
(Layer Four)

Provides transparent transfer of data between session entities and relieves them
from any concern with the detailed way in which reliable and cost effective
transfer of data is achieved.

The basic transport services are:

■ Establish, maintain, and release transport connections (connection-mode)

■ Transfer normal or expedited data (connection-mode)

■ Map a request for transmission of a Transport Service Data Unit (TSDU)
onto a request for the connectionless-mode network service (connectionless-
mode)

Network Layer
(Layer Three)

Provides the means to establish, maintain, and terminate network connections
between open systems, and provides transport entities independence from
routing and relay considerations.

The basic network services are:

■ Establish, maintain, and terminate network connections (connection-mode
only)

■ Provide sequencing, flow control, and expedited data transfer (connection-
mode only)

■ Select routes and quality of service

■ Segment or block data and transfer network service data units

■ Provide error detection, recovery, and notification

Data Link Layer
(Layer Two)

Provides functional and procedural means to establish, maintain, and release
data link connections, or transfer data link service data units between network
entities.

The basic data link services are:

■ Establish, maintain, and release data link connection (connection-mode only)

■ Provide sequence and flow control (connection-mode only)

■ Delimit and transfer service data units over data link

1–8 Assembler API Concepts

OSI Reference Model

■ Provide error detection, recovery, and notification

Physical Layer
(Layer One)

Provides the mechanical, electrical, functional, and procedural means to
activate, maintain, and deactivate physical connections for bit transmission
between data link entities. This is the lowest layer, it provides the following
basic services:

■ Provides physical connection between data link entities

■ Transfers physical service data units

■ Provides fault detection and notification

International standards either have been or are being defined at each layer of the
OSI Reference Model.

At least two standards are specified for each layer:

■ A standard that defines the services provided by the layer.

■ A standard that defines the protocol by which these services are provided.

A service interface standard at any layer frees users of the service from the
details of how that layer’s protocol is implemented, or even which protocol is
used to provide the service, if more than one is defined. ISO International
Standard 8072 defines the service interface for the transport layer.

The transport layer is important because it is the lowest layer in the OSI
Reference Model that provides the basic service of reliable, end-to-end data
transfer needed by application programs and higher-layer protocols. In doing so,
this layer hides the topology and characteristics of the underlying network from
its users. More importantly, the transport layer defines a set of services common
to layers of many contemporary protocol suites, including Internet, ISO, XNS,
and SNA. The protocol suite of primary interest to the API (Internet) is
summarized in the following subsection.

Internet Protocol Suite

The maturity of the Internet protocol suite favors it as the dominant set of
protocols for interconnecting multi-vendor systems. The protocol suite has been
standardized by the U.S. Department of Defense, and certification procedures
have been established to test protocol conformance. This suite of protocols is
often referred to as the TCP/IP family of protocols, derived from the names of
the transport and network layer protocols.

Major Application Layer Protocols

The Internet suite defines these major application layer protocols:

API Overview 1–9

OSI Reference Model

■ TELNET virtual terminal service supports remote login from ASCII
terminals. TELNET options are defined that permit login from full-screen,
3270-type terminals.

■ File Transfer Protocol (FTP) supports the transfer of arbitrarily large files or
programs between dissimilar file systems. File maintenance utilities such as
renaming, deleting, and listing of file names are also supported.

■ Simple Mail Transfer Protocol (SMTP) supports the exchange of electronic
mail. SMTP can also be used to transfer files, but its use is generally limited
to moderate size files containing ASCII text. Some systems may let SMTP be
used to submit batch jobs and retrieve batch output.

Note: Presentation and session layer services are not defined as separate Internet
protocols, and the corresponding functions are embedded within the application
layer protocols.

Major Transport Layer
Protocols

Internet defines these major transport layer protocols:

■ Transmission Control Protocol (TCP) provides ordered, reliable transfer of
a stream of data bytes with no explicit message boundaries. TCP is a
connection-mode transport service that establishes virtual connections to
associate two communicating processes.

■ User Datagram Protocol (UDP) provides unreliable transfer of independent
units of data called datagrams. UDP is a connectionless-mode transport
service that maintains no permanent association between network processes.
Since UDP maps directly into the underlying connectionless network layer,
data transfer is very efficient.

Internet Protocol (IP) (IP) is a sublayer protocol of the layer common to all connected systems. IP
provides a connectionless datagram delivery service to any IP node on the
internet.

If the destination node is not on the local network, IP routes the datagram to a
gateway that forwards the datagram to the next network in the sequence of
connected networks. Fragmentation and reassembly of datagrams is also
provided by IP to support datagrams larger than the underlying layers can
accommodate on the physical media.

Generally, IP is implemented over a Connectionless Network Service (CLNP),
but connection-mode services such a X.25 are also used. In addition to wide-area
packet-switched networks, local area networks based on Ethernet, token-bus,
and token-ring technologies are generally used. These local area networks
correspond to the IEEE 802.X series of protocols, usually without 802.2 (LLC)
encapsulation.

1–10 Assembler API Concepts

OSI Terminology

OSI Terminology
The Unicenter TCPaccess API is oriented towards the Internet protocol, and can
be described in terms of OSI-based, ISO protocols. Since the OSI is a general
model, it is appropriate that OSI terminology be used to describe the operation
and use of the API. This terminology applies to the Internet protocol suite as
well. Sometimes the names are different, such as TSAP versus port for
identifying upper-level entities, but, generally, the concepts are similar. This
chapter describes concepts in both TCP and OSI terminology. After the initial
reference to both terms, the book refers to concepts in TCP terminology.

The OSI architecture defines a set of rigorous conventions and terminology for
specifying OSI-compliant protocols and service definitions. Some of this
terminology has already been used in this document.

You have already been introduced to the fact that open systems are comprised of
distinct, functional layers. Within each layer, entities communicate with entities
above and below across an interface. For each layer of an open system, two
standards must be defined: one describing the services provided by the layer and
one describing the protocols used to provide the services.

Transport Services and Protocols

Since this document is concerned with the transport layer, it discusses transport
services and transport protocols.

Transport Service
Provider (TP)

The hardware and software that implement the protocols and services is called
the provider. Thus, the provider of transport services is called the transport
service provider.

Transport Service User
(TU)

 The hardware and software that uses the services of an adjacent layer is a user
of those services and in this document is referred to as a transport service user.

Note: For brevity, sometimes refers to these terms as the transport provider and
transport user, and simply abbreviates them as TP and TU.

In the most basic sense, the API implements the interface between a TU and a
TP.

Service Access Points (SAP)

Each user of a given layer’s services accesses the provider via a unique Service
Access Point, generally abbreviated as SAP. A Transport Service Access Point is
referred to as a TSAP. An identifier that specifies the location of an SAP is a
Service Access Point Address, or simply address and if the identifier is that of an
SAP in the transport layer, it is a transport address.

API Overview 1–11

OSI Terminology

Connections

An association established by a layer between two peer users for the transfer of
data is called a connection, and each terminal end of a connection within a
service access point is called a connection endpoint. Thus, a connection between
two transport users is called a transport connection, and its terminal end within
a TSAP is called a Transport Connection Endpoint (TCEP), or transport endpoint
for short. This document uses the term endpoint to mean a transport endpoint.

Primitives

The provider supplies services to the user via the invocation of primitives. A
primitive specifies the function to be performed and is used to parameters
consisting of data and control information. The primitives and their parameters
indicate what information flows between the user and the provider of the
service. The interface determines the method by which this information is
conveyed.

These types of primitives are used to define the interaction between adjacent
layers:
Request A primitive initiated by a user to request a service from the

provider.

Indication An indication initiated by the provider to inform the user of some
condition, such as the presence of incoming data.

Response Some indications require an action on the part of the user; this is the
response primitive.

Confirm A primitive initiated by the provider to convey to the user that the
information was given by the peer user to the peer provider in a
response primitive. The confirm primitive implicitly means that the
original request has completed.

Service Data Units

Finally, the unit of data transferred across the interface between a user and
provider, and subsequently between two peer users, is called a Service Data Unit
(SDU). The provider is responsible for mapping service data units onto Protocol
Data Units (PDUs) by outgoing SDUs into PDUs and reassembling incoming
PDUs into SDUs. A small service data unit whose transfer is expedited is called
an expedited service data unit. Within the transport layer, these data units are
referred to as TSDUs, TPDUs, and expedited TSDUs, respectively.

1–12 Assembler API Concepts

Transport Layer Services

Transport Layer Services
The transport layer is responsible for the delivery of data between transport
users across a communications facility. In providing this service, the transport
layer may need to deal with a variety of networks with differing characteristics
and capabilities. Depending on the sophistication of the lower layers, the
transport layer may require complex protocols to carry out its designated
functions. By defining a set of common services and mapping these onto the
capabilities and services of the network layer, the transport layer can shield
upper layers from many of the details of data transfer. As such, the upper layers
are able to focus on user requirements and applications.

While the services of any given layer are standardized, the method of acquiring
them is not. This is because the manner in which information is conveyed
between layers depends heavily on the environment in which they are
implemented. Therefore, ISO 8072 defines the services of the transport layer and
the API determines how these services are acquired.

The mechanisms used by the API to initiate, complete, and synchronize requests
for service should be familiar to you as an MVS application programmer.

Note: The semantics of those requests, derived from the underlying transport
services, may be foreign to you if you are unfamiliar with OSI-based networking.
Therefore, the following section provides a brief overview of transport services
and serves as an introduction to the concepts and facilities of the API. As before,
this discussion is oriented toward OSI-compliant systems. However, any major
differences between ISO and internet transport services are noted.

API Overview 1–13

Transport Layer Services

Modes of Service

The following services are supported by internet and ISO protocols:

Connection mode: A transport connection is established between two peer
transport users prior to the exchange of data.

Connectionless-mode: No transport connection is established and each data unit
transferred is independent of previous or subsequent data units.

Connection-Oriented Transport Service (COTS)

Connection-mode service within the transport layer is referred to in this
document as Connection-Oriented Transport Service (COTS).

COTS provides the means to establish, maintain, and release transport
connections providing duplex transmission between two transport users. It
guarantees that all data units transferred arrive at their proper destination intact,
uncorrupted, in the order in which they were sent. If this cannot be achieved, the
user of the transport service is notified. COTS is the most widely used of the two
modes of service.

COTS provides these basic services:

■ Transport connection establishment

■ Data transfer

■ Transport connection release

These services describe the three phases of operation within the transport layer:

■ The initial phase is the connection establishment phase, during which the
transport connection is established

■ The middle phase is the data transfer phase, during which all data is
transferred

■ The final phase is connection release phase, during which the connection is
released and the association between transport users is terminated

1–14 Assembler API Concepts

Transport Layer Services

COTS service primitives are many and varied and are discussed in terms of the
basic services to which they apply. This table lists the COTS primitives
associated with each basic service along with the parameters provided with each
primitive.

Service Primitive Parameters

Connection
Establishment

T-CONNECT.request Called Address
Calling Address
Service Options
Quality of Service
User Data

 T-CONNECT.indication Called Address
Calling Address
Service Options
Quality of Service
User Data

 T-CONNECT.response Responding Address
Service Options
Quality of Service
User Data

 T-CONNECT.confirm Responding Address
Service Options
Quality of Service
User Data

Data Transfer T-DATA.request
T-DATA.indication
T-EXPEDITED-
DATA.request
T-EXPEDITED-
DATA.indication

User Data
User Data
User Data
User Data

Connection
Release

T-DISCONNECT.request
T-DISCONNECT.indication

User Data
Disconnect Reason
User Data

API Overview 1–15

Transport Layer Services

Transport Connection Establishment

Transport providers establish connections to transport users, which the provider
identifies by transport address pairs. The transport service and the users
negotiate the quality of service of the transport connection. When connections
are established, the class of transport service to be provided can be selected from
a defined set of available classes of service. These service classes are
characterized by combinations of selected values of parameters such as
throughput, transit delay, and connection set-up delay and by guaranteed values
of parameters such as residual error rate and service availability.

Connection
Establishment
Example

The connection establishment phase is best described by example. This diagram
illustrates this process between two transport users, where Transport User A
(TU.A) wants to communicate with Transport User B (TU.B):

Transport User A

Transport
Provider

T-CONNECT.request

Called address (TU.B)
Transport address (TU.A)

Desired quality of service
and service options

Connect user data to send

TP.A

Transport User B

Transport
Provider

TP.B

TPDU

Transport address
Address of TU.B

Desired quality of service
and service options

Connect user data to send

T-CONNECT.indication

Called address (TU.B)
Transport address (TU.A)

Desired quality of service
and service options

Connect user data to send

T-CONNECT.response

Negotiated quality of service
Responding address

 and service options

1

2

3

4

T-CONNECT.confirm

Quality of service

Responding address

and service options
TU.B user data

(address of TU.B)

(Protocol exchange)

User data to return

TU.A TU.B

5

1–16 Assembler API Concepts

Transport Layer Services

The steps in this process are:

1. TU.A issues a T-CONNECT.request to its transport provider, TP.A, that
includes this information:

■ Its own transport address (calling address)

■ The protocol address of TU.B (called address)

■ The desired quality of service and service options

■ Any connect user data to send to TU.B (connect user data is limited to 32
bytes)

At this time, TU.A may indicate whether the requested values for the quality
of service and service option parameters are absolute or whether degraded
values are acceptable.

2. The provider sends a transport connection request (TPDU) containing these
items to its peer, TP.B.

3. TP.B issues a T-CONNECT.indication to TU.B.

If the T-CONNECT.request from TU.A indicated that degraded values for
quality of service and service options was acceptable, either transport
provider (TP.A or TP.B) or the peer transport user (TU.B) can negotiate
particular parameters to a lesser value.

4. If TU.B wants to communicate with TU.A, it accepts the connection request
by issuing a T-CONNECT.response giving this information:

■ The responding protocol address

■ Negotiated quality service and service options

■ Any user data to return to TU.A

Currently, the responding address given in the T-CONNECT.response
primitive must be identical to the called address provided in the T-
CONNECT.indication primitive. Future definitions of the transport service
may let the responding address be different (e.g., the responding address
may be the specific address resulting from calling a generic address).

5. After a suitable protocol exchange between TP.B and TP.A, TP.A issues a T-
CONNECT.confirm primitive informing TU.A of the successful connection
establishment. The confirmation message includes this information:

■ The responding address

■ Quality of service and service options

■ TU.B user data

The parameter values returned with the T-CONNECT.confirm primitive are
the final, negotiated values that must be equal to or inferior to the requested
values.

API Overview 1–17

Transport Layer Services

The TCP Connection
Model

The OSI connection model requires that the transport provider obtain the
explicit permission of the transport user to establish the connection. The TCP
connection model differs from this in a subtle but significant way.

In the TCP model, the responding transport user is passive and does not
intervene explicitly in the connection process. Rather, the transport user
receiving connection requests advises its transport provider in advance which
transport users it is willing to connect to. This is done by providing a partially or
fully qualified protocol address of the calling transport user. Partially qualified
protocol addresses are treated as wild-card specifications, and the null address
indicates that a connection from any transport user is acceptable.

TCP also permits the establishment of a transport connection between two
transport users that issue simultaneous connection requests. ISO does not.
Simultaneous symmetric connection requests in the OSI model results in two
transport connections. Generally, this is of academic importance, since the active
and passive nature of clients and servers is such that simultaneous symmetric
connection requests are avoided.

TCP connection service supports a type-of-service parameter that is defined at
the IP layer and is used for the life of the connection. However, the definition of
this parameter is not as rich and extensive as the ISO counterpart. Also, the
results of negotiation are the opposite of ISO. If the two TCP transport users
disagree on the choice of type-of-service, the superior value is used.

Data Transfer

The OSI transport layer offers these services:

■ The transfer of normal data

■ The transfer of expedited data

The expedited data transfer service must be requested during connection
establishment and is negotiated as a service option.

Two primitives are defined for normal data transfer.

1–18 Assembler API Concepts

Transport Layer Services

The following diagram shows the data transfer process, which are:

1. TU.A issues a T-DATA.request to its transport provider (TP.A), providing the
user data as a parameter. This user data parameter is the Transport Service
Data Unit (TSDU) and may be of any arbitrary size.

2. The transport provider TP.A takes one of these actions and transfers the data
to the remote transport provider (TP.B)

■ If the TSDU is longer than one TPDU, the transport provider segments
the TSDU into multiple TPDUs.

■ If the TSDU is shorter than one TPDU, the transport provider blocks it
with previous TSDUs.

Note: In this example, transport provider TP.A segments the TSDU into
multiple TPDUs.

3. The transport provider TP.B must reassemble or unblock the TSDU and
deliver it to the TU.B transport user using a T-DATA.indication primitive.

T-DATA.request

Transport Service
Data Unit

TSDU

T-DATA.indication

Transport Service
Data Unit

TSDU

Transport User B
TU.B

Transport User A
TU.A

TPDUTPDUTPDU

Tranport
Provider

TP.A

Tranport
Provider

TP.BTSDU TPDU

TPDU

TPDU

1

2

3

API Overview 1–19

Transport Layer Services

The TCP Data Transfer
Model

TP.A and TP.B provide for the transfer of a stream of TSDUs in both directions
simultaneously while preserving the integrity, sequence, and boundary of each
TSDU.

TCP provides a similar service except that there is no notion of a TSDU. That is,
TCP transfers a continuous stream of bytes with no record boundaries. If record
boundaries are required by the transport user, they must be embedded within
the data stream itself.

The ISO transport user has no direct control over when the transport provider
forwards the data. However, the TCP transport provider can be forced into
forwarding any buffered data by using a push mechanism. When invoked by the
sending transport user, any data buffered by the local transport provider must
be transmitted to the destination provider and delivered to the transport user.
However, since there is no method for the destination transport user to
determine where within the data stream a push occurred, this mechanism cannot
be used to mark data boundaries. It serves only to force the transport provider to
forward locally buffered data, using partially filled packets, if necessary. Pushed
data is subject to the normal flow control restrictions of the protocol.

OSI Expedited Data
Transfer Service

OSI also offers a data transfer service for small, expedited TSDUs containing up
to 16 bytes of user data.

This service is optional in the sense that it must be:

■ Requested by the calling transport user

■ Agreed to by the called transport user

■ Supported by the selected class of transport protocol

When this service is enabled, the sending transport user issues a T-EXPEDITED-
DATA.request providing the data as a parameter, and the destination provider
delivers the expedited TSDU as a parameter of the T-EXPEDITED-
DATA.indication primitive.

The transfer of expedited TSDUs is subject to different quality of service and
separate flow control from that applying to normal data transfer.

These are some of the key points:

■ The transport provider guarantees that an expedited TSDU is not delivered
after any subsequent normal or expedited TSDUs transmitted on the same
connection

■ Expedited TSDUs may bypass normal TSDUs but can be delivered to the
destination transport user only when normal data is not being accepted

1–20 Assembler API Concepts

Transport Layer Services

■ Since expedited TSDUs are small, and since only one may be in transit at a
time, expedited data transfer is best used for exceptional conditions and is
inappropriate for bulk data transfer

The analogue in TCP transport service is called urgent data. It differs from ISO-
expedited data transfer in that urgent data is transmitted in-band with normal
data, and a pointer to where the urgent data ends may precede the data. The
destination transport user is advised of the urgent condition and should dispose
of unprocessed data quickly until the marked location in the input stream is
reached. There is no length associated with TCP urgent data per se; the urgent
pointer merely marks where the urgent data ends. Some providers attach special
significance to the first byte of data following the urgent pointer and provide an
out-of-band mechanism to read it. However, this is a nonstandard service.

Transport Connection Release

The connection release service is used to abandon connection establishment,
release an established connection, or indicate a failure to establish or maintain a
connection. Connection release is permitted at any time regardless of the current
connection phase, and a request for release cannot be rejected. The transport
provider does not guarantee delivery of any user data once the release phase is
entered. Two primitives apply to connection release.

The following diagram shows the process the steps are required to complete as
outlined below.

1. A T-DISCONNECT.request is issued to the applicable transport provider
(TP.A) by either transport user (TU.A) to abandon connection establishment
or to release an established connection.

2. The transport provider delivers a T-DISCONNECT.indication to the
connected transport provider (TP.B).

3. The transport provider delivers the message to its transport user (TU.B). Up
to 64 bytes of disconnect user data can be provided as a request parameter
and is delivered to the destination transport user as long as the indication
was the result of a user-initiated disconnect. A reason parameter is always
provided with the indication.

4. The T-DISCONNECT.indication primitive also can be issued by a transport
provider to indicate its inability to establish a connection or a failure to
maintain an existing connection. In this case, no user disconnect data is
provided with the indication, but a reason parameter indicates the cause of
the indication (if known).

5. The ISO connection release service is similar to the TCP connection abort
service (connection reset).

API Overview 1–21

Transport Layer Services

Note: Unlike TCP, ISO does not support an orderly connection release. This
form of release guarantees that any buffered data is delivered to the
transport user before the connection is released. ISO merely guarantees that
buffered data is delivered to the destination transport provider.

The TCP orderly release service is sometimes referred to as a graceful close. Each
transport user must agree to release the connection before the connection is
dissolved, and until then, the TCP transport provider maintains the connection.
Once a connection has been released by a transport user, no more data can be
sent, but the user can continue to receive data. Any data previously sent is
delivered to the destination transport user.

Tranport
Provider

TP.A

Transport User A
TU.A

Transport User B
TU.B

Disconnect user data

T-DISCONNECT.request

Disconnect user data

T-DISCONNECT.indication

Disconnect user data

T-DISCONNECT.indication

Tranport
Provider

TP.B

1

2

3

4

5

Endpoint States and Service Sequence

Four states are defined for the connection endpoint when using Connection-
Oriented Transport Service (COTS). This table lists these states:

Note: Refer to Connection-Oriented Transport Service (COTS) for a list of valid
sequences of COTS service primitives at a given connection endpoint.

State 1
(Idle)

The idle state reflects the absence of a transport connection. It is the initial and
final state of any sequence and once it has been re-entered, the connection is
released.

State 2
(Outgoing-

The outgoing-connection-pending state indicates that connection establishment
is in process and is entered when the local transport user issues a valid

1–22 Assembler API Concepts

Transport Layer Services

Connection-Pending) connection request. The transport user must wait for a connect confirmation or
abandon the connection attempt with a disconnect request.

State 3
(Incoming-
Connection-Pending)

The incoming-connection-pending state indicates that connection establishment
is in process and is entered when the local transport user has received a connect
indication from its transport provider. The transport user must either accept or
reject the connection request.

State 4
(Data-Transfer-Ready)

The data-transfer-ready state reflects the presence of a fully established
transport connection. End-to-end data transfer can only occur in this state.

This sequence diagram shows the COTS service primitives. The states are
represented by circles and transitions between states are represented by arrows.
The labels next to an arrow represent the events that can cause the state
transition. The current state is at the base of the arrow and the new state is at the
arrow point.

T-DISCONNECT
indication

T-DISCONNECT
request

T-DISCONNECT
indication

T-DISCONNECT
request

T-DISCONNECT
request

T-DISCONNECT
indication

T-CONNECT
indication

T-CONNECT
request

T-CONNECT
confirm

T-CONNECT
response

1
 Idle

2
 Outgoing
 Connection
 Pending

4
 Data
 Transfer
 Ready

3
 Incoming
 Connection

T-DATA
request

T-DATA
indication

T-EXPEDITED-DATA
request

T-EXPEDITED-DATA
indication

API Overview 1–23

Transport Layer Services

Connectionless Transport Service

The OSI Reference Model as originally published did not provide for
connectionless-mode service. However, recognizing that this unnecessarily
limited the power and scope of the reference model and excluded important
classes of applications and network technology that are fundamentally
connectionless in nature, an addendum was published that provided for
connectionless-mode service within all layers of the model. Connectionless-mode
service within the transport layer is referred to in this document as
Connectionless Transport Service (CLTS). Within the Internet suite of protocols,
connectionless-mode usually is referred to as a datagram service.

CLTS provides for the transfer of a single unit of data (TSDU) from a source
TSAP to a destination TSAP without establishing a connection. The transport
user can initiate such a transfer by the performance of a single service access.
Since the transport provider is not required to relate this service access with any
previous or subsequent access, all information required to deliver the TSDU
must be provided with each access. This is in sharp contrast to COTS, where
such information need be supplied only during establishment of the connection.

CLTS requires a prearranged association between peer transport users that
determines the characteristics of the data to be transmitted, and no dynamic
negotiation of parameters and options may be done. Since this prearrangement is
unknown to the transport provider, such information must be provided with
each unit of data to be transmitted.

From the perspective of the transport provider, data units are unrelated to their
predecessors and successors, and therefore, ordered delivery without
duplication or loss cannot be provided. No indication is returned to the sender
when data units are delivered to the destination, and no flow control mechanism
exists to prevent the source from sending data units faster than the destination
can receive them. However, the transport provider does offer the optional
guarantee that each data unit that arrives at the destination arrives intact—it is
not truncated or corrupted. In the absence of congestion and network failures,
CLTS can provide generally reliable service.

CLTS services are acquired via the invocation of two service primitives:

■ T-UNITDATA.request

■ T-UNITDATA.indication

Each primitive requires four parameters:

■ The source transport address

■ The destination transport address

■ The quality of service

■ The user data

1–24 Assembler API Concepts

Transport Layer Services

The following diagram shows connectionless Transport service and
demonstrates the following:

1. If a transport user (TU.A) wants to send a unit of data to some destination, it
provides the data and all required parameters to the transport provider
(TP.A) with a T-UNITDATA.request primitive.

2. When the transport provider (TP.B) receives a unit of data destined for the
transport user (TU.B), it is presented to the user along with the
accompanying parameters via a T-UNITDATA.indication primitive.

 Source Address
Destination Address

Quality of Service
User Data

T-UNITDATA.request

 Source Address
Destination Address

Quality of Service
User Data

T-UNITDATA.indication

Transport User A
TU.A

Transport User B
TU.B

Tranport
Provider

TP.A

Tranport
Provider

TP.B

1

2

The following sequence diagram shows the simplicity of connectionless service
for primitives issued at a CLTS endpoint:

1
 Idle

T-UNITDATA
request

T-UNITDATA
indication

Often the connectionless transport service is mapped directly onto a
connectionless network service that has identical service primitives, resulting in
a service that is efficient and easy to use.

API Overview 1–25

Transport Layer Services

UDP is the internet equivalent of ISO connectionless-mode transport service.
UDP is similar in capability, except that UDP does not support the quality of
service parameter.

Transport Layer Addressing

Many of the services described in this chapter require addresses to be supplied
as parameters of the service primitive.

Example COTS connection establishment primitives require the calling or called
(responding) protocol address of the transport user, and the CLTS data transfer
primitives require the source and destination protocol address of the TSDU. The
addresses supplied with these primitives must identify the transport user, the
transport provider through which the transport user is accessed, and the end-
system (that is, host) in which the transport user and transport provider reside.

Internet Domain Addressing

Transport layer addresses for the internet domain contain a transport-layer and
network-layer component. The transport-layer component is called a port
number. At the network layer, the address is an internet address. Both the port
number and internet address are fixed in length: four bytes for the internet
address and two bytes for the port number.

An internet address is a 32-bit (four-octet) binary value. This value defines the
overall address space that is a set of address numbers. The dot notation is a
common way of representing an internet address so that users can read and
write it easily. Each octet of the address is converted into a decimal number and
the numbers are separated by dots.

The port number identifies services or clients using those services at a specified
internet address. Server port numbers are generally used by multiple clients.
Client port numbers are generally used by a single client and assigned
dynamically by the transport provider.

Example For MERMAID.HQ.MYCOMPANY.COM:

■ The 32-bit binary address is 10001010 00101010 10000000 11010000

■ The dot notation address is 138.42.128.208

An internet address is made up of two components:

■ A network address

■ A local (host) address

1–26 Assembler API Concepts

Transport Layer Services

The following table describes the internet address components as illustrated in
the following diagram.

Internet Address

HostNetwork

Local HostSubnet

Component Part Description

Internet Address Network
Address

Indicates the network to which the node is attached.
Assigned by the Internet Network Information Center (NIC)

 Host Address Identifies an individual node.
Assigned by the authority that administers the particular network.
The host number may be further subdivided into a subnet number
and a local host address. This subdivision is administered by the
network authority and is generally transparent to hosts outside of the
network.

Host Address Subnet The network authority is responsible for assigning and administering
subnet numbers. Unlike the network number, the subnet number
does not contain any embedded information that would allow
determination of its length. This information must be configured for
each host connected to the subnet.

 Local Host The network authority or subnet administrator is responsible for
assigning local host numbers.

API Overview 1–27

Transport Layer Services

Network Classes The internet address is always four bytes in length, but the network and host
numbers (addresses) vary in length according to the class of network.

Three network classes are currently in general use and are identified by the first
two bits of the network number. The following table describes these network
classes:

Note: The DECIMAL VA LUE RANGE column indicates the decimal value the
address starts with when the address is written in dot notation (for example,
138.42.128.208).

Class Initial
Bits

Description Decimal
Value
Range

A 0xxx Used for large networks.
The NIC assigns a fixed value to the first byte of the address. The last three
bytes are managed by the organization.
The navy has a Class A address of 26, so all navy addresses are in this
format:

26.nnn.nnn.nnn

0 – 127

B 10xx Used for medium sized networks
The NIC assigns a fixed value to the first two bytes of the address. The last
two bytes can be managed by the organization.
Example: My Company has a Class B address of 138.42, so all internet
addresses are in this format:

138.42.nnn.nnn

128 – 191

C 110x Used for small networks
The NIC assigns one or more fixed values to use in the first three bytes of the
organization’s addresses. The organization has control of the last byte.
Example: My Company has a Class C address of 198.137.88, so all internet
addresses are in this format:

198.137.88.nn

192 – 223

1–28 Assembler API Concepts

Transport Layer Services

Connecting to an Internet Address

The transport user initiating a connection, or initiating a connectionless data
transfer, must determine the address of the destination transport user in
advance.

Generally, this information is acquired in one of these ways:

■ The destination transport user is a standard service whose address is fixed
and known throughout the network, such as a file server supporting a group
of workstations on a local area network. Such addresses are generally
referred to as well-known addresses.

■ The destination transport user is not a well-known service, but its address is
configured as part of the application program or is configured in a system
database, and the application program can read it.

■ A directory service or name server is used to map the name of a service or
host into its address. The directory service can be located on the same host,
in which case the transport user can access it directly, or it can be located on
some remote host, in which case the transport user needs to know the
address of the directory service.

■ The user connects to a logger service whose address it knows and requests
access to some particular service. The logger service spawns a process to
service the user and returns its address so it can be connected to directly.

Sometimes a combination of these techniques is used.

Example The well-known transport address may be known in advance and a name server
is used to return the network address of a well-known service at some particular
host.

It is generally not advisable to configure static information into an application
program unless it is unlikely that the information will change. Therefore, the
preferred approach is to use a dynamic service such as a network-wide directory
service. In the internet environment, the Domain Name System (DNS) maps
global names to addresses.

In either case, the user requests a local user agent to search the distributed
directory for information associated with a globally-unique name. The local user
agent then contacts a server agent and requests the desired information. If the
information is available, it is returned to the requesting agent and forwarded to
the user. Otherwise, the user agent might be redirected to another server agent,
or the server agent might contact another agent on its behalf. This process
continues until it is determined that the name is unknown, or a server agent is
found that has the required information.

API Overview 1–29

Chapter

2 Concepts and Facilities

This chapter describes the basic functional concepts of the Unicenter TCPaccess
Application Program Interface (API) and the facilities used to send requests to
the API.

It discusses the following topics:

■ API Organization—Describes the relationship between the API, the transport
service provider, and the transport service user and the basic components
and processing phases of the API

■ Concepts and Terminology—Describes the fundamental concepts on which
the API is based and includes definitions of applicable terminology

■ Establishing a Session with a Transport Provider—Describes the processes
involved in establishing a session between the API and a transport provider

■ Connection-Mode Service—Describes the transport connection, endpoint
management, and address management during a session between a
transport user and its peer when the session occurs for an extended period

■ Connectionless-Mode Service—Describes endpoint management and data
transfer during short-term interaction between a transport user and its peer
when the session occurs for an extended period

■ Connectionless Service with Associations—Describes the interaction between
two connectionless-mode transport users who are performing tasks other
than simple request/response transactions

■ Local Endpoint Management—Describes the API functions used to control
processing at an endpoint

■ Declarative Macro Instructions—Describes the macro instructions that are
generally used to define data areas used by other macro instructions and
which do not generate any executable code

■ Endpoint States and Function Sequences—Describes the states that can occur
at an endpoint and the functions that can be executed at an endpoint

Concepts and Facilities 2–1

API Organization

API Organization
The Unicenter TCPaccess API is an interface between a transport service
provider (TP) and a transport service user (TU). The transport provider operates
in its own address space and provides transport services to application programs
or session layer entities using internet protocols. The transport user operates in
its own address space and accesses those services using the transport interface
(the API).

Relationship Independence

The transport user need only be concerned with the characteristics and facilities
of the API and can operate without knowledge of the underlying protocols.
Regardless of the transport protocol, the procedures used to establish a
connection and transfer data are generally the same. Because the transport layer
hides the details of lower layers, application programs using the API are
independent of protocol as well as the physical medium over which
communications occur.

The following diagram shows the relationship among the Transport User,
Transport Provider, and API.

TRANSPORT PROVIDER
ADDRESS SPACE

TRANSPORT USER
ADDRESS SPACE

T.requests
T.response

SERVICE REQUESTS

SERVICE PRIMITIVES

SERVICE COMPLETIONS

SERVICE PRIMITIVES

EVENT INDICATIONS

T.indication
T.confirm

TRANSPORT USER

TRANSPORT INTERFACE
(API)

TRANSPORT PROVIDER

TRANSPORT USER
TRANSPORT USER
ADDRESS SPACE

TRANSPORT PROVIDER
ADDRESS SPACE

2–2 Assembler API Concepts

API Organization

The transport user issues requests for service that are mapped by the interface
into service primitives supported by the transport provider. For an OSI-
compliant provider, a request or response primitive is the result. Similarly,
service primitives issued by the transport provider and received by the API are
mapped into service completions or special event indications. In this case, the
OSI provider issued an indication or confirm primitive.

Service Request Processing

Service requests issued by the transport user involve these phases of processing:

Phase 1 Initial processing performed during invocation of the request.

Phase 2 Primary processing performed within the transport provider's address
space.

Phase 3 Final processing performed in the transport user's address space when
the request has been completed.

The amount of time required to complete a request can range from immediate to
indefinite, depending on the type of request and the current processing load on
the system. Requests that require protocol exchanges between transport layer
entities also can be delayed by network malfunctions or congestion in the
network.

Service Request
Modes

The following modes are provided for processing service requests:

Synchronous Blocks the transport user until the request is completed. In this
case, the task issuing the request is suspended and is not
redispatched (except to process asynchronous interrupts) until
posted during the final processing phase.

Asynchronous Does not block the transport user when a protocol event must
occur in order to complete the request.
Control is returned to the issuing task as soon as this is
determined. When the necessary events occur, processing in the
transport provider's address space is performed
asynchronously, and the transport user is informed when the
request completes. In the mean time, the transport user can
perform other tasks, including issuing more requests to the
transport provider.

Concepts and Facilities 2–3

API Organization

Instead of anticipating an event by issuing a request and waiting for it to
complete (that is, issuing a receive request to read some incoming data), the
transport user might prefer to be signaled when certain events occur, and then
respond by issuing the appropriate request. When properly implemented, this
method also prevents the transport user from being suspended. In this case,
special event indications are signaled to the transport user by scheduling exit
routines that can preempt normal processing.

API Components

The API operates as an MVS subsystem and consists of several components. This
list of components starts with the transport provider and works up toward the
transport user.

Transport Provider
Interface Routines

Interface routines that run in the transport provider's address space under
control of a space-switch PC routine or a transport provider dispatchable unit
(for example, the transport provider's address space must be dispatched to run
these routines).

These routines provide protocol request event handling on behalf of the
transport user.

Infrastructure (IFS) An infrastructure that provides the cross-memory environment required for
communicating between address spaces.

This component consists of routines to initialize the subsystem and cross-
memory environment, routines to manage resources used by the transport
interface, and MVS subsystem exits to perform cleanup during task and
address space termination.

Space-Switched
Program Call (PC)
Routines

Routines located in the transport provider's address space that are executed
under control of the transport user's TCB (for example, the transport provider's
address space is not dispatched to run these routines).

PC routines let code and data structures be located outside of the transport
user's address space, thereby maximizing the amount of local storage available
for use by both the application program and the transport provider.

Transport User
Interface Routines

Interface routines located in common storage that can be called directly by the
transport user and that preprocess requests before forwarding them to the
appropriate PC routine.

Placing these routines in common storage eliminates the need to link edit any
API routines with the application program or to load any executable modules
at runtime. Some of these routines also run asynchronously to process event
indications issued by the transport provider.

2–4 Assembler API Concepts

Concepts and Terminology

Macro Instruction
Library

A library containing macro instructions that generate parameter lists and user
data structures required by API routines that generate the linkage to common
storage interface routines to initiate service requests.

C Service Functions
Library

A library of functions that provide services similar to the assembler language
interface for programs written in the C programming language.

These library routines let you generate API service requests as standard C
function calls. The data structures used are identical in format and content to
those used by the assembler language interface.

Socket Interface
Functions Library

A library of functions that implement a socket interface for application
programs written in the C programming language.

The API socket library enhances portability of networking applications
developed to run on BSD UNIX systems or systems supporting the BSD socket
interface.

Concepts and Terminology
This section introduces the fundamental concepts on which the API is based.
This section also defines important terms used throughout the remainder of this
programmer’s reference. This terminology is the real instantiation of the abstract
Open Systems Interconnection (OSI) terminology introduced in the chapter “API
Overview.”

Modes of Service

The API supports connection-mode service (Connection-Oriented Transport
Service (COTS)) and connectionless-mode service (Connectionless Transport
Service (CLTS)).

Connection-Mode
Service

A connection is established for the purpose of transferring data. All data is
delivered intact, uncorrupted, in the same order as transmitted and without
duplication.

Concepts and Facilities 2–5

Concepts and Terminology

Connectionless-Mode
Service

No connection is established and a unit of data can be transmitted to any
destination, or be received from any source. Each data unit is independent of
previous and subsequent data units, and no guarantee is made with regard to
the reliable delivery of data. The API also supports a hybrid of these two
service modes called associations. Associations are to CLTS as connections are to
connection-oriented transport service (COTS): a long-term binding between
two connectionless transport service (CLTS) users for transferring data.
Associations let the transport user use a connectionless service in a connection-
oriented fashion. This feature is transparent to the provider and implemented
entirely within the transport interface.

Endpoints and Access Points

Services can be acquired only through transport user endpoints. Services use
access points to address transport users.

Endpoints A COTS endpoint represents the TU end of a connection and is the source or
destination of all data transferred via the connection.

A CLTS endpoint simply represents a transport user (TU) source and
destination of connectionless data units. An endpoint can be thought of as a
logical channel of communication between the transport user and transport
provider. A transport user may use multiple endpoints, and service interactions
with the provider are multiplexed and de-multiplexed based on the endpoint
with which they are associated

A transport provider creates and dissolves endpoints at the request of the
transport user. The process of creating an endpoint is called opening, and the
process of dissolving an endpoint is called closing. When an endpoint is opened,
it is given a unique identifier that must be provided with each subsequent
service request associated with the endpoint. This identifier is called an endpoint
ID. When opening the endpoint, the transport user specifies the communications
domain within which the endpoint exists and the service mode desired. The API
uses this information to determine the transport provider and protocol that
services the endpoint.

Access Points The transport service access point through which the transport user is
addressed must also be declared. This is done by binding the ISO TSAP address
(transport address) or TCP port number to the endpoint. The transport address
can be specified by the user or assigned by the provider. The service access
point can be changed later without closing the endpoint by runbinding the
current transport address and then binding a new one.

2–6 Assembler API Concepts

Concepts and Terminology

Each endpoint can be bound to a unique transport address, or multiple
endpoints can be bound to the same address. An endpoint cannot, however, be
bound to more than one address. Whether the relationship between endpoints
and access points is one-to-one or many-to-one is generally determined by the
connection strategy employed by the transport user.

Connection Strategies

The binding service is also used to indicate how many connect indications can be
pending to the transport user. If this value is greater than zero, the endpoint is
said to be enabled. Otherwise, the endpoint is disabled. CLTS endpoints not
engaged in an association are always disabled, and once the local transport
address is bound, are ready for sending and receiving data. COTS endpoints
cannot engage in data transfer until connected.

One of two connection strategies can be used by the transport user. The
determination of which strategy to use is based on the role of the transport user
and its relationship with other transport users with whom it connects. Typically,
one user is the provider of some service, and the other is a consumer.

The transport user providing a service (the server) operates in client mode.

Client Mode The client is the active participant in establishing a connection. The client TU
initiates the connection establishment phase by issuing a request to connect to
the server. The client TU then waits for confirmation that the connection has
been established. Client-mode requires a disabled endpoint. When the
connection is confirmed, the client TU can enter the data transfer phase.

Client-mode is generally characterized by a one-to-one relationship between
endpoints and access points.

Concepts and Facilities 2–7

Concepts and Terminology

The following diagram shows client mode with one endpoint per TSAP.

TRANSPORT PROVIDER
ADDRESS SPACE

TRANSPORT USER
ADDRESS SPACE

TRANSPORT USER

TRANSPORT INTERFACE
(API)

TRANSPORT PROVIDER

TCEP

TSAP

TRANSPORT USER
ADDRESS SPACE

TRANSPORT PROVIDER
ADDRESS SPACE

Server Mode The server TU is the passive participant and listens for connect indications
generated by the transport provider. This requires an enabled endpoint. When
a connect indication is generated, the server must decide whether to accept,
establish the connection or reject (abandon) the connection.

If the connection is accepted, the endpoint enters the data transfer phase and a
confirmation is returned to the client.

Single-Threaded Servers are transport users operating in server mode that
service their clients one at a time. When a single-threaded server is connected to
a client, no other clients can be serviced. This mode is used when the service can
be performed in a relatively short period of time or when the role of the two
connected users is not clearly distinguished, and by prearrangement one agrees
to act as the server. The latter situation is a consequence of the connection model
requiring one party to initiate and the other party to respond. An analogy of this
situation is a telephone system that requires each party to call the other at
precisely the same time whenever one desires to talk to the other. Such a system
is unworkable. Therefore, one initiates the call and the other answers. The
previous diagram also shows the client/server relationship in a single-threaded
server.

2–8 Assembler API Concepts

Concepts and Terminology

Multithreaded Servers can service many clients simultaneously and are typical
of the traditional client/server model. Since many connections can be active at
one time, multithreaded service is characterized by a many-to-one relationship
between endpoints and access points.

TRANSPORT PROVIDER
ADDRESS SPACE

TRANSPORT USER
ADDRESS SPACE TRANSPORT USER

TRANSPORT INTERFACE
(API)

TRANSPORT PROVIDER

TCEP

TSAP

TCEP TCEP

TRANSPORT USER
ADDRESS SPACE

TRANSPORT PROVIDER
ADDRESS SPACE

Working in multithreaded environments adds complexity to the connection
strategy. Because the endpoint on which a connect indication arrives must be
available for receiving additional indications, the connection must be established
to a new endpoint. Typically, a multithreaded server reserves one endpoint for
receiving connect indications and establishing connections to new endpoints, all
bound to the same access point.

Client/Server
Connection

Another characteristic of clients and servers is that clients must know the
address of the server in advance. Therefore, the server access point is generally
at a well-known address.

When the client TU initiates the connection request, the server TU is given the
address of the caller. Since the server does not need this address in advance, the
client can use an endpoint that is allocated dynamically. Often, the client lets
the transport provider assign the address of its access point.

Once the connection is established and the data transfer phase is entered, the
distinction between client and server is usually unimportant, relative to the
transport provider; the client TU and server TU send and receive data in exactly
the same manner.

Concepts and Facilities 2–9

Concepts and Terminology

Data Transfer Modes

When a connection is established, the API may transfer data in two modes,
Transport Layer Interface (TLI) mode and Sockets mode. TLI and Sockets modes
only affect data transfer; there are no connection issues associated with them.
The transfer mode is specified in the TOPEN macro, and data transfer primarily
affects the TSEND macro.

TLI Mode The default data transfer mode—used in all previous releases of Unicenter
TCPaccess. TLI mode is a programmable interface that lets applications be built
independent of the networking protocols below them, and provides reliable
network transmission.

A COTS data send request in TLI mode completes when all of the data is
acknowledged by the remote transport provider. A CLTS data send request
completes when the data is given to the network. The amount of data that can be
sent is subject to limiting values defined by the installation or negotiated by the
transport user. A TLI mode data send request is all or nothing with respect to the
amount of data to be sent. If all data cannot be sent, none of it is sent and the
request completes in error.

Socket Mode Socket mode data transfer feature was introduced with Version 5.2 of Unicenter
TCPaccess. When the API is using Socket mode, data transfer operates in a
manner similar to BSD sockets.

Socket mode allows data send requests to specify larger amounts of data than
can be accommodated by the currently available send buffer space. In TLI
mode, if you exceed the transfer data window size, an error occurs. In Socket
mode, data transfer continues as the send window reopens to continue. A
TSEND or TSENDTO request in Socket mode completes when all of the data
that will be sent is passed to the local transport provider (for example, TCP or
UDP).

The amount of data that is actually sent depends on whether the request
specifies blocking or non-blocking operation (specified by OPTCD=BLOCK or
OPTCD=NOBLOCK). If blocking is in effect, then all of the data in the send
request is sent. If non-blocking is specified, all, some, or none or the data may be
sent. The amount of data that is actually sent depends on the space available in
the current send buffer.

2–10 Assembler API Concepts

Concepts and Terminology

Disconnect and Orderly Release

When two connected transport users complete data transfer, the transport
connection can be released in one of two ways:

■ Disconnect Service

■ Orderly Release Service

The method used depends on the characteristics of the transport user as well as
the capabilities of the transport provider.

Disconnect Service The simplest method commonly supported by all transport providers. When a
connection is released in this fashion, the termination is abrupt, and any
previously transmitted data not received by the connected transport user may
be discarded.

If the transport user is a session layer entity, coordinated release and
forwarding of user data is handled by the session layer protocol. Otherwise, the
application program must implement its own procedures for coordinated
release of the connection or accept the consequences of a possible loss of data.

Orderly Release
Service

Alternate method implemented by the transport provider. This service
provides for a graceful release of the connection that does not occur until both
transport users agree. If each transport user receives all buffered data before
agreeing to the release, no data is lost.

Service Requests and Parameters

The transport user issues service requests to the API by executing transport
service functions. Each transport service function has a corresponding assembler
language macro instruction that generates a parameter list and calls the
appropriate API routine to execute the function. Application programs written in
the C programming language use a runtime library of C functions that provide
the necessary assembler language interface to the API routines

A function code passed to the API routine identifies the requested service, and a
parameter list contains all other information needed to execute the function.

The parameter list can be generated in-line or out-of-line to support both
reentrant and nonreentrant programming. This parameter list is formally known
as a Transport Service Parameter List (TPL). It serves the same purpose as an
RPL in VTAM.

Note: The TPL contains many parameters found in the RPL, such as option
codes, ECB or exit routine addresses, return codes, and so forth.

Concepts and Facilities 2–11

Concepts and Terminology

The TPL is the primary structure for requesting API services and exchanging
information. Refer to The Transport Service Parameter List for a detailed
description of the TPL.

The TPL contains these types of information:

■ Parameters and control information common to all functions and used
primarily to coordinate execution with the transport user

■ Function-specific parameters that are fixed in length and can be stored
within the TPL

■ Function-specific parameters that are variable in length and whose value is
stored in a user-provided storage area

The TPL can be generated or manipulated in a variety of ways. The simplest
method is to use the in-line form of macro instructions that build the TPL in line
with assembler instructions to initiate the request. In-line macro instructions
build a separate parameter list for each macro instruction. Since many service
requests require similar information, it is more efficient to reuse the same TPL
for other types of requests. A list form of each macro instruction is provided for
this purpose.

The in-line and list forms have the characteristic of being nonreentrant. If the
transport user is reentrant, the TPL must be built dynamically in local storage.
Therefore, there are forms of each macro instruction that generate, modify, or
execute TPLs in a storage area designated by the transport user. An assembler
language dummy control section (DSECT) is also provided so the user can build
and manipulate the TPL directly.

Using one of these methods, the transport user constructs a parameter list
containing the necessary information and initiates its execution. The API
interprets the information in the parameter list to determine the service (that is,
function) requested, validate the parameters, and schedule the request for
further processing. When processing is complete, the parameter list is updated
and any information to be returned to the transport user is stored in the
designated storage areas.

Before discussing the transport service functions supported by the API, it may be
helpful to introduce some of the parameters that affect their processing. You will
find a more thorough discussion of service parameters in the Unicenter TCPaccess
Communications Server Assembler API Macro Reference, which describes the
operands of each macro instruction in detail.

2–12 Assembler API Concepts

Concepts and Terminology

Common Parameters Are present in all requests for service. They represent the smallest subset of the
TPL required to execute a transport service function. Generally, this
information is used to coordinate processing with the transport user.

The following is a list of common parameters:

■ A TPL identifier

■ The function code

■ A semaphore indicating whether the parameter list is in use

■ Various flag bits affecting execution of the request

■ The endpoint identifier

■ The address of an ECB to post or an exit routine to schedule when the
request is complete

■ Option codes that modify execution of the request or indicate special
conditions

■ Return codes that indicate the success or failure of the request and determine
error recovery actions

All requests are associated with some endpoint and require an endpoint
identifier. The one exception is the open service, which requires an endpoint
identifier of zero for opening a new endpoint.

Option codes are used to alter execution of a request by selecting optional
facilities or indicating special conditions (for example, indicating the end of a
TSDU or selecting a synchronous or asynchronous mode of execution). Option
codes are interpreted only by the API and should not be confused with protocol
options, which are processed by the transport provider. The latter are specified
with a separate parameter as described in Transport Protocol Options.

In the following sections, some of these option codes are referred to by name. For
example, the option code that indicates the end of a TSDU is called EOM (End of
Message). Writing OPTCD=EOM is the notation for signifying that the EOM
option code was, or should be, indicated. Option codes usually come in pairs
where one code indicates the opposite condition of its counterpart. In the
example, NOTEOM is used to indicate the continuation of a TSDU.

The remaining common parameters are used primarily for synchronization and
the handling of errors and exceptional conditions. Refer to the chapter “Program
Synchronization and Control” for detailed information.

Concepts and Facilities 2–13

Concepts and Terminology

Fixed-Length
Parameters

Fixed-length parameters are function-specific parameters whose value can
always be stored in a 32-bit word. They are passed by value (that is, stored
within the TPL itself), and generally specify information only of interest to the
API or the transport user.

This is a list of some examples of fixed-length parameters:

■ Sequence numbers identifying pending connect indications

■ Endpoint identifiers for accepting connect indications to a new endpoint

■ TCB and ASCB addresses used for passing ownership of endpoints

■ The size of the connect indication queue

■ Residual byte counts after send and receive requests

■ Disconnect reason codes

■ Datagram error code

Fixed-length parameters are used for returning information as well as supplying
information. There is room in the TPL for three such parameters. The number of
parameters used is specific to each function, as is the type of value stored in a
given parameter location. Parameter locations unused for a given function are
automatically cleared by the API.

Variable-Length
Parameters

Variable-length parameters are passed by reference. In this case, the address
and length of the parameter is stored in the TPL and the parameter itself is
stored in the indicated storage. In almost all cases, these parameters contain
information that is exchanged directly between the user and provider and
indirectly between peer users. Often this information is not interpreted by the
API and is merely transferred from one to the other.

These three variable-length parameters are defined:

■ Transport protocol address

■ Transport user data

■ Transport protocol options

Variable-length parameters are the primary arguments of the transport interface.
While the value of these parameters may be provider-specific, their use and
relationship to the transport interface is not.

Transport Protocol Addresses or protocol addresses for short, contain the
addressing information necessary for establishing connections and identifying
the source and destination of connectionless data units.

2–14 Assembler API Concepts

Concepts and Terminology

Protocol addresses consist of three components.

T-address N -addressDom ain

N et H os tPort

Internet Address

In te rnet

The structure of a protocol address is defined for program access and
manipulation by assembler language DSECTs and C structure declarations
available to the application program. The assembler language DSECTs can be
found in the appendix, “Data Structures” of the Unicenter TCPaccess
Communications Server Assembler API Macro Reference. The equivalent C structure
declarations may be found in the chapter “C Language Structures” of the
Unicenter TCPaccess Communications Server C/Socket Programmer’s Reference.

The domain field of the protocol address identifies the communication domain
to which the address belongs. This field must match the communication domain
specified when the endpoint was opened. In particular, this field identifies the
address as belonging to the Internet domain.

The two remaining fields contain a transport address and a network address,
respectively. In the Internet domain, this is a port number and internet address.
Addresses in the Internet domain are fixed in length: a two-byte domain
identifier followed by a two-byte port number followed by a four-byte internet
address, for eight bytes.

Sometimes it is permissible to supply a partial protocol address. For example,
when binding the endpoint to a local access point, it is generally not advisable to
provide the network address because the transport provider already knows its
network address. In cases where the host is connected to more than one network,
it may have multiple network addresses and the correct one cannot be
determined until certain routing decisions are made based on the destination
address. A partial protocol address is specified by indicating the absence of the
network address, by either its length or its contents set to zero.

Transport User Data is referred to simply as user data throughout the remainder
of this guide. User data is usually that data exchanged between transport users
using send and receive requests.

Concepts and Facilities 2–15

Concepts and Terminology

User data is an arbitrary string of data bytes, uninterpreted by the API or the
transport provider. No particular character format is assumed (that is, the data
may be ASCII, EBCDIC, or pure binary data). The only restriction is the amount
that can be transferred with a single service request, and the data must consist of
imposes syntax on user data transferred between transport entities. In the
absence of an OSI protocol stack, the application program has sole discretion
over the content of user data. User data generally is supplied or returned as a
single, contiguous string of bytes. This is called direct mode, because the user
data parameter directly identifies the data. Sometimes it might be more
convenient to send or receive data as noncontiguous segments. This often is
referred to as scatter-read or gather-write, or, more simply, indirect mode, because
one level of indirection is required to locate the data. In this case, the user data
parameter references a vector, each element of which defines a segment of
contiguous data.

The following diagram shows direct user data parameters and indirect user data
parameters.

Direct User Data Parameters

TPL

User Data Address

User Data Length

User Data

Indirect User Data Parameters

TPL

User Data Address

User Data Length

User Data Vector

Segment Address

Segment Length

Segment Address

Segment Length

User Data
Segment-1

User Data
Segment-n

… …

2–16 Assembler API Concepts

Concepts and Terminology

Transport Protocol Options

Transport protocol options are used to:

■ Enable optional facilities

■ Specify certain service parameters

■ Override installation defaults for selected internal variables (for example,
specifying quality of service parameters, enabling expedited data service,
and modifying internal buffer parameters)

In almost all cases, protocol options apply only to the transport provider or
transport user and are passed through the API without interpretation. The
format is provider-specific. To assist the application program in manipulating
these options, assembler language DSECTs and C language structure
declarations are provided. Protocol options are provider or protocol specific.

In one case, the protocol options parameter is used to specify or change the API
variables. These variables affect how many send or receive requests can be
pending for an individual endpoint, and how much buffer is allocated. These are
not exactly protocol options, even though the protocol option parameter is used
to manipulate them. An option code is provided to indicate whether the protocol
options parameter contains API options or transport provider options.

The Transport Service Parameter List

The parameter groups reflect the physical structure of the TPL. The standard
TPL is 56 bytes in length and must be aligned to a fullword boundary. If
OPTCD=EXTEND, the length is 84 bytes. A dummy control section is provided
to map the fields of the TPL and can be found in the TCPaccess Assembler API
Macro Reference.

The TPL is organized with the most frequently-used information at the start.
Since many transport service functions only interpret a subset of the TPL, a
shorter version can often be used. The in-line form of macro instructions
generates a short TPL unless forced to do otherwise. All forms of API macro
instructions support a short and long version of the TPL. Use caution, however,
as this feature is function-specific. Refer to the TCPaccess Assembler API Macro
Reference for detailed information. The name given to a field within the TPL
corresponds to the macro instruction operand that references that field. An
extended version of the TPL is available as well. Extended TPLs append
additional fields to the long form TPL that may contain ALETs of ESA extended
addresses.

Concepts and Facilities 2–17

Concepts and Terminology

Example Option codes indicated with the OPTCD operand are stored in the OPTCD field.
The symbol defined by the TPL DSECT that corresponds to this field is
constructed by prepending TPL to the name of the field. Therefore, the option
codes are stored at the symbolic location TPLOPTCD.

Some of the examples used in the remainder of this chapter contain references to
symbols defined by the TPL DSECT.

TPL Standard Format The following diagram shows the standard format of a TPL containing a
common, fixed-length, and variable-length parameter section.

EP

ECB or EXIT

OPTCD

RTNCD

PARM1

PARM2

PARM3

ADBUF

ADLEN

DABUF

DALEN

OPBUF

OPLEN

IDENT FNCCD ACTIV FLAGS0

16

20

28

32

52

Common Prefix

Fixed-length Parameters

Variable-length Parameters

PRM1X

PRM2X

PRM3X

ADALT

DAALT

OPALT

XDIAG

56

TPL Addressing Extension
(optional)

2–18 Assembler API Concepts

Concepts and Terminology

Common Prefix The TPL starts with a common prefix present for all transport service functions.
The parameter list prefix consists of control information, completion status,
option codes, and the endpoint identifier. It also contains the minimum amount
of information required to execute a transport service function.

This list describes the major fields within this prefix.
IDENT Identifies the data structure as a TPL. A version number can be

encoded within the identifier to indicate which version level of the
API generated the TPL in the event future versions change the use of
certain fields.
Note: This field should not be modified or interpreted by the
application program.

FNCCD Contains a function code that designates the transport service being
requested. This code usually is set automatically by macro instructions
corresponding to each transport service function.

ACTIV This byte contains the test-and-set semaphore used to indicate
whether the TPL is active. This field is cleared by the TCHECK macro
instruction when the requested function completes. The TPL must not
be modified while it is active.
Note: The application should never set or clear this field directly.

FLAGS Contains flag bits set and cleared by the API and generally is of no
interest to the application program.

EP Contains the endpoint identifier of the endpoint associated with the
request. Except for TOPEN, this field must always contain a valid
endpoint identifier of a currently opened endpoint. However, this
field can be changed between function requests to reference different
endpoints.

ECB or
EXIT

Used for synchronization and is shared by these different uses:
■ An internal ECB
■ The address of an external ECB posted when the function

completes
■ The address of an exit routine entered when the function

completes
■ The FLAGS field is used to indicate how this field currently is

being used

Concepts and Facilities 2–19

Concepts and Terminology

OPTCD Contains option codes controlling how a function request is processed.
This field is used primarily by the application program to provide
information to the API. However, in a few cases, the API may set bits
to indicate special conditions that have occurred. OPTCD field format
is composed of four consecutive bytes.

OPCD1 OPCD2 OPCD3 OPCD4

■ OPCD1 specifies options that apply to all transport service
functions

■ OPCD2, OPCD3, and OPCD4 specify options that apply to specific
functions or groups of functions

Once specified, options remain in effect until explicitly changed. A
zero value for any bit or subfield represents the default indication of
the corresponding option code.

RTNCD The field in which the API returns completion status. RTNCD is a
fullword consisting of these subfields:

ACTCD ERRCD DGNCD

ACTCD A recovery action code used to determine the appropriate
action on completion of a transport service function.

ERRCD A conditional completion code or specific error code,
depending on whether the function completed
conditionally or abnormally.

DGNCD Contains a module and instance code to identify the
specific instance of the error.

Fixed-Length
Parameters

Immediately following the parameter list prefix is a section consisting of three
fullword, fixed-length parameters. These parameters are function-specific and
are passed by value; that is, the parametric value itself is stored in the TPL.

This list describes the fixed-length parameter fields.
PARM1 Shared by several uses. Generally, it contains a parameter provided by

the application program that is processed by the requested function.
The API also can use this field to return a parameter to the application
program. The alias names QLSTN, SEQNO, and TCB are used to
reflect the function-specific use of this field.

PARM2 Shared by several uses. Generally, it contains a parameter provided by
the application program that is processed by the requested function.
The API also can use this field to return a parameter to the application
program. The alias names NEWEP, ASCB, and COUNT are used to
reflect the function-specific use of this field.

2–20 Assembler API Concepts

Concepts and Terminology

PARM3 Shared by several uses. Generally, it contains a parameter returned by
the API to the application program on completion of particular
functions. In some cases, this field is used to pass additional
information provided by the application program to the API. The alias
names USER, DISCD, and DGERR are used to reflect the function-
specific use of this field.

Variable-Length
Parameters

Variable-length parameters follow the fixed-length parameters and are passed
by reference. In this case, each variable-length parameter is identified by its
address and length, stored within the TPL.

The following diagrams shows variable-length parameter format.

PARAMETER ADDRESS

PARAMETER LENGTH (in bytes)

X

X+4

Variable-length parameters must be contained in the same address space as the
TPL that references them.

Three variable-length parameters can be provided. They consist of:

■ A protocol address

■ User data,

■ Protocol options

The area identified by one of these parameters can contain information supplied
by the application program, information returned by the API, or both.

This list describes the TPL fields identifying variable-length parameters.
ADBUF Contains the address of a storage area used to pass a protocol address

from the application program to the API or from the API to the
application program. The relevant length is stored in the ADLEN field.

ADLEN Contains the length of a storage area whose address is stored in the
ADBUF field. This field is used to define the length of protocol address
information supplied by the application program or returned by the
API.

DABUF Contains the address of a storage area used to pass arbitrary user data
from the application program to the API or from the API to the
application program. The relevant length is stored in the DALEN field.

DALEN Contains the length of a storage area whose address is stored in the
DABUF field. This field is used to define the length of user data
supplied by the application program or returned by the API.

Concepts and Facilities 2–21

Concepts and Terminology

OPBUF Contains the address of a storage area used to pass protocol options
from the application program to the API or from the API to the
application program. The relevant length is stored in the OPLEN field.

OPLEN Contains the length of a storage area whose address is stored in the
OPBUF field. This field is used to define the length of protocol options
supplied by the application program or returned by the API.

TPL Suffix TPL suffix parameters allow the use of extended addresses. These suffix
parameters append to the long form TPL and may contain ALETs of ESA
extended addresses.

The TPL suffix is optional. An ALET (Access List Entry Token) is a value used
in IBM Extended Addresses to designate the address space containing the
referenced data area.
PRM1X TPL extension for PARM1.

PRM2X TPL extension for PARM2.

PRM3X TPL extension for PARM3.

ADALT An ALET corresponding to ADBUF.

DAALT An ALET corresponding to DABUF.

OPALT An ALET corresponding to OPBUF.

XDIAG Extended diagnostic code for TPL.
The code includes a two-byte module identifier and a two-byte
instance identifier.
Only fields that are referenced by a particular function need to be
initialized. Also, many fields are optional and can be set to zero. The
proper method to indicate that a variable-length parameter is missing
is to set its length to zero.
Note: Setting a parameter's address to zero and specifying a non-zero
value for its length is expressly prohibited and generates an error.
Using the in-line form of macro instructions frees you from having to
allocate and manage TPLs, but at the expense of using more memory
and being nonreentrant.
When the application program chooses to generate TPLs directly, two
strategies suggest themselves:
■ To generate a single TPL and reuse it for all requests
■ To generate a TPL for each type of request and reuse it only for

functions of the same type

2–22 Assembler API Concepts

Establishing a Session with a Transport Provider

 The organization of the application program determines the best
approach. The TPL provides a convenient mechanism for exchanging
information with the API and the transport provider. It associates the
information required for a single request into a self-contained unit that
is more efficiently processed by the API. Since much of this
information must be forwarded to the transport provider anyway,
overhead is diminished by initially providing it in parameter list form;
and because many transport functions require the same information,
the same TPL can be reused with minimal effort.

Establishing a Session with a Transport Provider
Before the application program can begin issuing transport service requests, it
must establish a session with the API. The term session is used loosely here to
describe the infrastructure built and maintained by the API to service the
application program. Establishing this session involves these processes:

■ Locating the API subsystem

■ Identifying the transport user

■ Allocating necessary resources

■ Initializing the interface environment

Session-Level Services

When the application program no longer requires the transport interface, the
session should be terminated.

This table lists the session-level services provided by the API.

Function Parameters M/O Description

AOPEN APCB Address M Establishes session with the API and
defines the transport user.

ACLOSE APCB Address M Terminates session with the API.

Note: The column labeled M/O indicates whether a parameter is mandatory (M)
or optional (O).

Concepts and Facilities 2–23

Establishing a Session with a Transport Provider

Application Program
Control Block (APCB)

The API uses a data structure supplied by the application program as the
primary anchor for information required to execute subsequent requests. This
data structure is called an APCB.

Note: In many respects, the APCB is analogous to the ACB used by VTAM. A
declarative macro instruction (also named APCB) can be used by the
application program to generate this data structure.

The AOPEN and ACLOSE macro instructions have as their only operand the
address of an APCB. The content of the APCB at the time it is opened determines
the characteristics of the session. Some fields of the APCB are filled in by
AOPEN and returned to their pre-opened state by ACLOSE. Other fields contain
values supplied by the application program that define the parameters of the
session.

An important parameter of the APCB is the MVS subsystem name for the API. If
not specified by the application program, a default value is used. Otherwise, this
must be the four-character ID of the API subsystem that is to service all future
requests. Normally the default value suffices, but in those cases where more than
one instance of the API is running, or where the name was changed during
installation, this parameter must be specified in order to locate the correct
subsystem.

AOPEN and ACLOSE Macros

A session is established with the API by issuing an AOPEN macro instruction
that specifies the APCB to use for the session. This is called opening the APCB.
All subsequent requests issued to the API must directly or indirectly reference an
opened APCB. The session is terminated by closing the APCB with an ACLOSE
macro instruction. Any resources allocated to the application program are
released, and all endpoints associated with the APCB are closed.

The AOPEN Macro This macro example shows how to establish a session with the transport
provider.
**
* ESTABLISH SESSION WITH API USING DEFAULT
* SUBSYSTEM
**
TUNIT AOPEN TUAPCB OPEN APCB FOR THIS TASK
 LTR 15,15 SESSION ESTABLISHED?
 BNZ AOPENERR IF NOT, GO TO ERROR ROUTINE
 .
 .
 . {body of application program}
 .
TUAPCB APCB AM=TLI,APPLID=EXAMPLE DEFINE TRANSPORT USER

2–24 Assembler API Concepts

Establishing a Session with a Transport Provider

The ACLOSE Macro This is an example of a macro for terminating a session with the transport
provider.
**

* TERMINATE SESSION WITH API BY CLOSING APCB
**
TUTERM ACLOSE TUAPCB CLOSE APCB FOR THIS TASK
 .
 . [no more service requests can be issued using this APCB]
 .
TUAPCB APCB AM=TLI,APPLID=EXAMPLE DEFINE TRANSPORT USER

Application Programs and Transport Users

Until now, this guide referred to the application program and the transport user
as if they were the same. Often they are, but there is a formal definition of the
transport:

■ The term application program is used throughout the remainder of this guide
to refer, in general, to the program running in an address space using the
API.

■ The term transport user specifically refers to the task that opened the APCB.
Since more than one task can execute in an address space, and since each
task can open an APCB, an address space might have more than one
transport user.

Concepts and Facilities 2–25

Establishing a Session with a Transport Provider

Application Program Example

This diagram shows an application program that consists of tasks A, B, and C.

TRANSPORT PROVIDER
ADDRESS SPACE

TRANSPORT INTERFACE
(API)

SESSION A SESSION C

TRANSPORT USER A

TASK A TASK B

TRANSPORT USER C

TASK C

APPLICATION PROGRAM

TRANSPORT USER
ADDRESS SPACE

TRANSPORT USER
ADDRESS SPACE

Transport user A (represented by task A) and transport user C (represented by
task C) has each opened an APCB and established a session with the API. Task B,
a subtask of A, has not opened an APCB and cannot open any endpoints of its
own. However, task B can use the infrastructure of task A to access endpoints
opened by A.

The APCB gives an identity to the transport user and defines the context of its
operation. Information associated with the APCB applies to the transport user in
general, and indirectly to all of its endpoints.

Example Exit routines that perform error recovery or process event indications are
enabled via an exit list specified in the APCB. These exits apply to all endpoints
created by the transport user unless specifically changed for a given endpoint.
You can specify an arbitrary word of user context with the APCB that is passed
as a parameter to exit routines. This lets a reentrant exit routine derive the
context of a given transport user.

2–26 Assembler API Concepts

Connection-Mode Service

Connection-Mode Service
Connection-mode service is most appropriate for networking applications where
the interaction between a transport user and its peer lasts for an extended period.
File transfer and remote logon to time-sharing services are typical examples of
applications that are well suited for connection-mode service.

Transport Connection Using connection-mode service, a transport user establishes a connection to a
remote transport user.

The following diagram shows this transport connection. The two transport
users communicate with one another through the transport interface and
transport provider at each end of the connection. Each end of the transport
connection is identified by the address of the Transport Service Access Point
(TSAP) through which service is obtained and a connection ID corresponding
to an endpoint within the service access point. The transport providers
maintain this connection for the entire duration of data transfer, however long
that may be. The Transport Connection Endpoint (TCEP) represents the user’s
interface to the TSAP.

TRANSPORT USER A

TRANSPORT INTERFACE
(API)

TRANSPORT USER A

TCEP

TSAP

TRANSPORT USER B

TRANSPORT USER B

TCEP

TSAP

TRANSPORT
CONNECTION

Connection-mode service is characterized by these phases:

■ Local endpoint management

■ Connection establishment

■ Data transfer

■ Connection release

Concepts and Facilities 2–27

Connection-Mode Service

These phases parallel the three service phases defined by the OSI Reference
Model with an additional phase for local endpoint management to handle those
functions beyond the scope of the transport provider. Local endpoint
management can be subdivided into an initialization phase that occurs before
connection establishment and a termination phase that occurs after connection
release. The following sections describe each phase in detail.

Local Endpoint Management

Local endpoint management consists of those services that are transparent to the
transport provider. That is, local endpoint services do not require any interaction
between the API and the transport provider to execute requests; they are
implemented entirely within the transport interface. These services are used
primarily to define and manipulate local information associated with endpoints.

Local endpoint services are provided via these groups of functions:

■ Functions to open and close endpoints

■ Functions to bind and unbind protocol addresses

■ Miscellaneous functions for managing information and options associated
with endpoints

The following table lists alphabetically all of the functions comprising local
endpoint management.

Note: In the following table, and those that follow, the column labeled M/O
indicates whether a parameter is mandatory (M) or optional (O). Parameters that
are returned (R) or updated (U) are also indicated.

Function Parameters M/O Description

TADDR Endpoint ID
Protocol Address

M
MR

Returns protocol address bound to endpoint, or
address of peer transport user.

TBIND Endpoint ID
Protocol Address
Queue Length

M
OU
MU

Binds protocol address to endpoint and enables
endpoint for receiving connect indications.

TCLOSE Endpoint ID
TCB Address
ASCB Address

M
O
O

Closes endpoint, or transfers control to another task or
address space.

TINFO Endpoint ID
User Data Address

M
MR

Returns protocol information or statistics associated
with endpoint.

2–28 Assembler API Concepts

Connection-Mode Service

Function Parameters M/O Description

TOPEN Domain
Service Type
APCB Address
New Endpoint ID
Old Endpoint ID
Exit List Address
User Context
User ID
TCB Address
ASCB Address
Data Transfer Mode

M
M
M
MR
OU
O
O
O
O
O
O

Establishes a new endpoint associated with a
transport provider, or acquires control of an endpoint
opened by another task or address space.

TOPTION Endpoint ID
Protocol Options

M
MU

Negotiates protocol options associated with endpoint.

TUNBIND Endpoint ID M Unbinds protocol address from endpoint, and disables
endpoint from receiving connect indications.

TUSER Endpoint ID
User ID

M
M

Associates a user-ID with endpoint for accounting and
authorization.

Example MR Indicates that the parameter is always returned.

OR Indicates that the parameter is returned only when the facility is supported
by the transport provider, and a storage area has been provided by the
transport user.

MU and OU Indicate that a parameter provided by the transport user can be
updated by the transport provider.

Opening and Closing Endpoints

A transport endpoint is opened by executing the TOPEN function. If the request
is valid and the appropriate resources are available, an endpoint is created in the
indicated communications domain. On completion of the function, an identifier
is returned that must be provided in all subsequent requests that reference the
endpoint. The identifier is returned in the symbolic location TPLEP (the symbol
TPLEPID can also be used) and is an unsigned fullword value. The application
program should make no assumptions with regard to the format and content of
the endpoint ID other than what has already been stated.

Concepts and Facilities 2–29

Connection-Mode Service

Opening an Endpoint

Only tasks that opened an APCB can open endpoints, and the address of the
APCB must be included as a parameter of TOPEN.

This parameter permanently associates the endpoint with the transport user, and
if the transport user terminates or closes the APCB, the endpoint is closed. The
APCB also serves to identify the subsystem that services the endpoint

Note: TOPEN and AOPEN are the only functions that require an APCB
parameter. All other functions locate the APCB via the endpoint ID.

The TOPEN Macro The following is an example of a macro for establishing a session with the
transport provider.
**

* OPEN CONNECTION-MODE ENDPOINT USING TCP PROTOCOL
**
EPINIT TOPEN DOMAIN=INET,TYPE=(COTS,ORDREL),APCB=TUAPCB
* OPEN ENDPOINT
 LTR 15,15 ENDPOINT CREATED?
 BNZ TOPENERR IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 L 9,TPLEPID LOAD NEW ENDPOINT ID
 DROP 1
 .
 . [new endpoint ID can be used in subsequent requests]
 .
 TDSECT TPL GENERATE TPL DSECT

where:

DOMAIN Identifies the communications domain

INET Specifies the Internet domain.

TYPE Selects the mode of service.

COTS Specifies connection-mode service.

ORDREL Must be included as an optional sublist parameter of the service
type if orderly release is required.

The DOMAIN and TYPE parameters are sufficient to select the transport
provider and protocol that provides the service. Alternatively, a protocol number
or service ID can be specified to make the selection in rare cases where the TYPE
and DOMAIN parameters are ambiguous or to override installation defaults (for
example, when multiple instances of the same provider exist).

2–30 Assembler API Concepts

Connection-Mode Service

A user ID can be associated with the endpoint. This information is used for
authorizing access to services and accounting for their use. The particulars of
how this information is used are not specified at this time, but it is anticipated
that the user ID will be used to acquire access privileges from the local security
system and will be included in any SMF data recorded by the API.

After an endpoint is opened, other API transport functions can be executed at the
endpoint by supplying the endpoint ID with each function request. Therefore,
the endpoint ID returned by TOPEN must be copied into any TPL used with
subsequent service requests. This is usually done automatically by specifying the
endpoint ID as an operand of the corresponding macro instructions. If the proper
endpoint ID is already stored in the TPL, perhaps by a previous macro
instruction, it is not necessary to code this operand.

Note: Failure to provide a valid endpoint ID with any API request (other than
TOPEN OPTCD = NEW) causes the request to be rejected.

Defining Protocol
Event Notification for
an Endpoint

If the transport user requires asynchronous notification of certain protocol
events, such as data arriving on a connection, the address of the exit routine or
ECB should be included in an event notification list and indicated to the
TOPEN function. Declarative macro instructions, TEXLST and TEVNTLST, are
provided to generate an event list.

The following protocol events are defined and correspond to particular service
primitives issued by the transport provider.

CONNECT Connect indication received.

CONFIRM Connect confirmation received.

DATA Normal data received.

XDATA Expedited data received.

DISCONN Disconnect indication received.

RELEASE Release indication received.

SWIND Send Window opened.

Exit Routines Each event may have a different exit routine, or no exit routine at all. If no exit
routine is specified for the event, or no exit list is specified for the endpoint, exit
routines associated with the APCB are scheduled to handle these events. Refer to
the chapter “Program Synchronization and Control” for a detailed discussion of
asynchronous exit routines.

Concepts and Facilities 2–31

Connection-Mode Service

When exit routines are entered, the application program may need to derive
some context associated with the endpoint to which the protocol event applies.
Therefore, the API passes the endpoint ID as a parameter to the exit routine
along with a word of user-defined context associated with the endpoint. This
context word is specified when the endpoint is opened.

Event Control Blocks
(ECBs)

If the transport user prefers, notification of certain protocol events can be
requested using ECBs rather than an exit. An ECB is an MVS control block that
is used to communicate between MVS services and application or system
modules.

The primary difference between ECBs and exit routines is that exit routines are
automatically scheduled when the requested operation completes, thereby
saving the application program the trouble of waiting on and testing ECBs. On
the other hand, the use of ECBs provides the program with greater control over
the order in which events are handled.

The TEVNTLST macro was added to support protocol event notification ECBs.
TEVNTLST supports ECBs and protocol event exits. TEXLST supports exits only.
TOPEN uses the EVENTLST parameter to support event lists consisting of exits
and ECBs. EVENTLST is not supported by the APCB macro.

Fast-Path Authorized
Exits

An authorized user can specify OPTCD=AUTHEXIT on the APCB macro or on
the TOPEN macro. In this case, protocol and completion event notification exits
are given control from an SRB rather than an IRB for the exit to run.

Closing an Endpoint

When the transport user is finished with an endpoint, it should be closed by
executing a TCLOSE function.

Closing an endpoint causes any established connection to be released and any
resources held by the endpoint to be relinquished.

The following is an example.

If a protocol address was bound to the endpoint, the address is unbound and
made available for other endpoints.

Normally, connection release and address unbinding is done explicitly with
separate service requests, but if the transport user needs to clean up
immediately, a single TCLOSE is sufficient.

2–32 Assembler API Concepts

Connection-Mode Service

The TCLOSE Macro The following is an example of a macro for terminating a session with the
transport provider:
**

* CLOSE ENDPOINT WHEN NO LONGER IN USE
**
EPTERM TCLOSE EP=(9) CLOSE AND DELETE ENDPOINT
 .
 . [endpoint must not be referenced after closing]
 .

Passing Control of an Endpoint

It may be convenient for the organization of the application program to have one
task open an endpoint and another task close it. Therefore, provision was made
to pass control of an endpoint from one task to another as long as each has
opened an APCB. This capability also extends to pass control of an endpoint to a
task in another address space.

To pass control, the current owner of the endpoint invokes the TCLOSE function
specifying the ASCB and TCB address of the task that is to receive control of the
endpoint. Similarly, the new task invokes TOPEN specifying the old endpoint ID
as well as the ASCB and TCB addresses of the task passing control. An ASCB
address of zero implies the current address space, and a TCB address of zero
indicates that any task in the address space can pass or receive control of the
endpoint.

A Typical Scenario A typical scenario is for the receiving task to be a subtask of the controlling task
and to have acquired the endpoint ID as one of its attach parameters.

Control is passed when each task rendezvouses at the same endpoint, one
closing and the other opening. From the perspective of the old transport user,
the endpoint is closed. From the perspective of the new transport user, a new
endpoint is opened. However, the new endpoint has the same characteristics as
the old endpoint, including the preservation of any connection that was
established. The endpoint ID is changed and the old endpoint ID can no longer
be referenced.
**

* PASS ENDPOINT TO ANOTHER TASK IN THIS ADDRESS SPACE
**
TU1PASS ST 9,OLDEPID STORE OLD ENDPOINT ID
 .
 . [task-1 attaches task-2 & passes endpoint ID in parmlist]
 .
 TCLOSE EP=(9),OPTCD=PASS CLOSE AND PASS ENDPOINT
 LTR 15,15 ENDPOINT PASSED?
 BNZ TU1FAIL IF NOT, GO TO ERROR ROUTINE
 .
 . [code executed by task-2 follows]
 .
**

Concepts and Facilities 2–33

Connection-Mode Service

* RECEIVE ENDPOINT FROM TASK WHICH ATTACHED THIS SUBTASK
**
TU2PASS L 1,0(,1) GET ADDRESS OF ENDPOINT ID
 L 9,0(,1) LOAD OLD ENDPOINT ID
 AOPEN TU2APCB OPEN APCB FOR THIS TASK
 LTR 15,15 SESSION ESTABLISHED?
 BNZ TU2FAIL IF NOT, GO TO ERROR ROUTINE
 TOPEN EP=(9),APCB=TU2APCB,OPTCD=OLD PASS OLD ENDPOINT
 LTR 15,15 ENDPOINT RECEIVED?
 BNZ TU2FAIL IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 L 9,TPLEPID LOAD NEW ENDPOINT ID
 DROP 1
 .
 . [new endpoint ID is used in subsequent requests]
 .
**
* CLOSE ENDPOINT WHEN NO LONGER IN USE
**
TU2TERM TCLOSE EP=(9),OPTCD=DELETE CLOSE AND DELETE ENDPOINT
 .
 .
 .
TU2PARM DC AL1(128),AL3(OLDEPID) ATTACH PARAMETER LIST
OLDEPID DS F OLD ENDPOINT ID
TU1APCB APCB AM=TLI,APPLID=TASK1 APCB FOR TASK-1
TU2APCB APCB AM=TLI,APPLID=TASK2 APCB FOR TASK-2
 TDSECT TPL GENERATE TPL DSECT

Binding and Unbinding Addresses

Before any interaction with the transport provider can commence, a transport
service access point must be assigned and associated with the endpoint. The
address of this access point is the identifier that a peer transport user uses to
connect to the local transport user. The TBIND function is used to assign the
transport address.

The address of the access point can be assigned in one of two ways.

■ If the transport user is a server, or expects the peer transport user to initiate
the connection, it must specify the transport address using the protocol
address parameter (ADBUF/ADLEN) of the TPL.

■ If the transport user is a client, the transport address is specified as null and
the transport provider assigns an unused transport address.

In either case, the communications domain identifies the transport address as the
Internet domain and the network address portion of the protocol address is
generally specified as a null address.

Whether or not the transport user intends to receive connect indications is also
specified with the TBIND function. The transport user declares its intentions by
specifying the size of the queue that holds pending connect indications. This
queue is called the listen queue and is the source of information supplied to a
transport user listening for incoming connection requests.

2–34 Assembler API Concepts

Connection-Mode Service

The size of the listen queue is specified with the QLSTN parameter. A value of
zero indicates that no connect indications can be queued, and the endpoint is
said to be disabled. A transport user operating as a client must use a disabled
endpoint. A transport user operating in server mode must enable the endpoint
by specifying a queue size greater than zero.

Using TBIND to Bind a
Well-Known Address
to a Server Endpoint

The OPTCD=USE option code is used to instruct the TBIND function to use the
transport address provided by the user. This is generally the address of a well-
known service, such as FTP, that is known to the peer transport user in
advance. If the address is available, that is, not being used by another transport
user and the requesting user has authority to use it, it is permanently associated
with the endpoint, and this identifies the access point for all future services.

The depth of the listen queue (QLSTN = 5 in the following sample code)
determines how many connect indications can be held at one time. However, it
does not restrict how many clients can be simultaneously connected through the
same access point. If the server is quick to respond to connect indications, or
does not expect many simultaneous connection attempts, the size of the listen
queue may be small. On the other hand, if the server is slow to accept
connections, or anticipates that more than one transport user might be trying to
connect at the same time, a higher value may be required. Except in special cases
where a value of one is recommended (for example, a single-threaded server),
usually a value of five is sufficient, even for servers supporting many
connections.
**

* BIND A WELL-KNOWN ADDRESS TO SERVER ENDPOINT
**
SERVER TBIND EP=(9),ADBUF=SERVERPA,ADLEN=LTPAINET,QLSTN=5, +
 OPTCD=USE BIND AND ENABLE ENDPOINT
 LTR 15,15 BIND SUCCESSFUL?
 BNZ TBINDERR IF NOT, GO TO ERROR ROUTINE
 .
 . [server can now listen for connect indications]
 .
SERVERPA DC AL2(TDINET),AL2(21),AL4(0) SERVER PROTOCOL ADDRESS
 TDSECT TPL,TPA,DOMAIN=INET GENERATE INET TPA DSECT
* NOTE: LTPAINET and TDINET are defined in the
* TPA and TPL macro expansions, respectively

Using TBIND to Bind
Any Available
Address to the Client
Endpoint

If the transport user is a client, or intends to initiate the connection to the peer
transport user, it does not require a specific transport address. Therefore, you
can assign any address from a pool of available addresses. In this case,
OPTCD=ASSIGN should be indicated with the TBIND function and the API
assigns the transport address. A storage area for returning the assigned address
can be specified with the protocol address parameter. If no storage area is
provided, the transport address is assigned, but not returned to the transport
user.

Concepts and Facilities 2–35

Connection-Mode Service

**

* BIND ANY AVAILABLE ADDRESS TO CLIENT ENDPOINT
**
CLIENT TBIND EP=(9),ADBUF=CLIENTPA,ADLEN=L'CLIENTPA,QLSTN=0, +
 OPTCD=ASSIGN ASSIGN AND RETURN ADDRESS
 LTR 15,15 BIND SUCCESSFUL?
 BNZ TBINDERR IF NOT, GO TO ERROR ROUTINE
 .
 . [client can now initiate connection to server]
 .
CLIENTPA DS XL(LTPAINET) CLIENT PROTOCOL ADDRESS
 TDSECT TPA,DOMAIN=INET GENERATE INET TPA DSECT

Binding and Listen
Queue Relationship

Although the binding of a transport address and the allocation of a listen queue
are two independent subfunctions of TBIND, they are related by the operating
mode of the transport user. A client generally lets the API assign the transport
address and specifies a queue size of zero. The server, on the other hand,
generally binds a specific transport address of its choosing and enables the
endpoint by specifying a queue size greater than zero.

These subfunctions can also be executed as two separate requests:

■ An address can be bound with a QLSTN value of zero, leaving the endpoint
disabled

■ A second TBIND function can be executed later enabling the endpoint with a
non-zero value for QLSTN

However, once an endpoint is enabled, the size of its listen queue cannot be
changed. The endpoint should not be enabled until the server is ready to receive
connect indications.

A server can use the listen queue to prioritize incoming connection requests.
Since connect indications do not need to be accepted in the order they are
presented, the server can gather several connect indications and accept them in
priority order based on source address and protocol options (for example,
quality of service). The depth of the queue represents the maximum number of
indications that can be pending to the server.

A server that establishes multiple connections through the same access point
requires an equal number of endpoints bound to the same transport address.
Although it is valid (and necessary) to bind more than one endpoint to the same
transport address, it is not valid to bind the same endpoint to more than one
transport address at one time.

2–36 Assembler API Concepts

Connection-Mode Service

Using TUNBIND to
Unbind an Endpoint

Another transport address can be bound to an endpoint only after the previous
address is unbound. This is done with the TUNBIND function.

The unbind service lets an endpoint be reused without closing and reopening.
When a transport address is unbound, it becomes available for other transport
users to use. If the endpoint was enabled, it can no longer queue connect
indications. Closing an endpoint causes any bound transport address to be
unbound as if the TUNBIND function had been issued.
**

* UNBIND PROTOCOL ADDRESS AND DISABLE ENDPOINT
**
UNBIND TUNBIND EP=(9) UNBIND PROTOCOL ADDRESS
 LTR 15,15 UNBIND SUCCESSFUL?
 BNZ TUBNDERR IF NOT, GO TO ERROR ROUTINE
 .
 . [endpoint should be closed or reused with new address]
 .

Retrieving Protocol Addresses

A function related to TBIND and TUNBIND is TADDR. The TADDR service is
used to retrieve protocol addresses associated with an endpoint.

Endpoints that are connected to a peer transport user are associated with two
addresses:

■ The local protocol address is the address bound to the endpoint by the
TBIND function.

The local protocol address can be retrieved at any time after a successful
TBIND is issued and is requested by indicating OPTCD=LOCAL with the
TADDR function.

■ The remote protocol address is the address of the connected peer transport
user.

 The remote protocol address can be retrieved only after a connection has
been established and is indicated by OPTCD=REMOTE.

**

* GET FULLY-QUALIFIED LOCAL PROTOCOL ADDRESS OF ENDPOINT
**
GETADDR TADDR EP=(9),ADBUF=LOCALPA,ADLEN=L'LOCALPA, +
 OPTCD=LOCAL GET LOCAL PROTOCOL ADDRESS
 LTR 15,15 ADDRESS RETURNED?
 BNZ TADDRERR IF NOT, GO TO ERROR ROUTINE
 .
 . [if endpoint is connected, network address is returned]
 .
LOCALPA DS XL(LTPAINET) AREA FOR RETURNING PROTOCOL ADDR
 TDSECT TPA,DOMAIN=INET GENERATE INET TPA DSECT

Concepts and Facilities 2–37

Connection-Mode Service

TADDR is of questionable value since most of the information returned can be
acquired through other means. However, the local protocol address returned by
TADDR after a connection is established contains the network address, as well as
the transport address and domain. Since multi-homed hosts cannot determine
the local network address until the destination address is known, such
information can only be retrieved in this manner. Nevertheless, knowing the
local network address is generally not a requirement for most networking
applications.

Miscellaneous Functions

The API service functions previously described must be invoked during the
initial or final phase of service for every endpoint. The endpoint management
functions described in this section are optional and generally can be invoked
during other phases of service. These are the services in this category:

■ Returning various information maintained by the transport provider

■ Manipulating protocol options

■ Specifying or changing the user ID and associated access privileges

The API and the transport provider maintain a variety of information associated
with each endpoint, some of which may be of direct interest to the transport
user. This information includes parameters and variables maintained by the
transport provider that characterize the underlying protocol and the type of
service available to the transport user, variables and control information that
govern the protocol exchanges between transport layer entities, and statistical
information that gives an accounting of the services provided. Some of this
information is provider and protocol specific, while other information can be
formatted and presented in a standardized fashion. The discussion in this section
focuses on that information common to all transport providers.

2–38 Assembler API Concepts

Connection-Mode Service

TINFO—Getting Basic Protocol Information

Information is obtained using the TINFO service function. The user data
parameter identifies a storage area provided by the application program for
returning information, and an option code specifies the type of information
desired. The TINFO service is the only API function that uses the user data
parameter for returning information not received from the peer transport user.
**

* OBTAIN BASIC PROTOCOL INFORMATION ABOUT TRANSPORT PROVIDER
**
GETINFO LA 8,INFOAREA LOAD ADDRESS OF DATA AREA
 TINFO EP=(9),DABUF=(8),DALEN=L'INFOAREA, +
 OPTCD=PRIMARY GET PROTOCOL INFORMATION
 LTR 15,15 INFORMATION RETURNED?
 BNZ TINFOERR IF NOT, GO TO ERROR ROUTINE
 USING TIB,8
 .
 . [information returned can be used for run-time configuration]
 .
INFOAREA DS XL(TIBLEN) AREA FOR RETURNING TIB
 TDSECT TIB GENERATE TIB DSECT

Basic protocol information that has been standardized for all transport providers
is requested by indicating OPTCD=PRIMARY. The information returned can be
used by the application program to determine basic characteristics of the
transport service (for example., maximum lengths of protocol addresses, user
data, and protocol options are provided). Whether or not certain facilities are
supported can also be determined. The intent of this information is to let the
application program interpret it at runtime and thereby adapt to the specific
characteristics of the transport service. A program that correctly applies this
information should be readily portable from one transport provider to another.

The Transport
Information Control
Block (TIB)

This information database is returned as a fixed-length data structure called a
TIB. The TIB is mapped by a DSECT generated by the TDSECT macro
instruction and is listed in its entirety in TCPaccess Assembler API Macro
Reference.

This list summarizes the type of information available:

■ The communications domain and mode of service requested

■ Basic characteristics and options of the underlying protocol

■ The MVS subsystem name, the API service name, and protocol number

■ Limits associated with various interface services

■ Limits associated with various provider services

The TCPaccess Assembler API Macro Reference gives a detailed description for the
TINFO macro and the basic protocol information returned by the TINFO service.

Concepts and Facilities 2–39

Connection-Mode Service

TOPTION—Manipulating Protocol Options

Protocol options are manipulated with the TOPTION service. The protocol
options parameter identifies a storage area containing a list of options to be
manipulated, and in some cases, a desired value for each option. An option code
(that is, the OPTCD parameter) provided with the request indicates the action
the transport provider should take.

These services are available:

DEFAULT Returns the default values of the indicated options.

QUERY Returns the current values of the indicated options.

VERIFY Verifies whether the value indicated for each option is supported,
and if not, returns the superior value supported.

DECLARE Sets the specified options to the indicated values and returns any
options negotiated to an inferior value.

Option codes (OPTCD) also indicate whether the options to be manipulated are
transport provider (TP) or interface options (API). TP provider options are
provider-specific and protocol-dependent. Transport interface options are
independent of any particular provider and only affect facilities within the API.
**

* DECLARE TRANSPORT INTERFACE OPTIONS
**
SETOPTN TOPTION EP=(9),OPBUF=APIOPTN,OPLEN=LENOPTN, +
 OPTCD=(DECLARE,API) DECLARE API OPTIONS
 LTR 15,15 OPTIONS ACCEPTED?
 BNZT TOPTNERR IF NOT, GO TO ERROR ROUTINE
 .
 .
 .
APIOPTN DC AL2(8),AL2(TPOAQSND),AL4(4) MAX NO. OF SEND REQS
 DC AL2(8),AL2(TPOAQRCV),AL4(1) MAX NO. OF RECV REQS
 DC AL2(8),AL2(TPOALSND),AL4(65536) LEN OF SEND BUFFER
 DC AL2(8),AL2(TPOALRCV),AL4(4096) LEN OF RECV BUFFER
LENOPTN EQU *-APIOPTN
 TDSECT TPO GENERATE TPO DSECT

2–40 Assembler API Concepts

Connection-Mode Service

Protocol Options List
Format

Although the number, type, and value of protocol options can vary from one
provider to the next, a common structure is used to format the protocol options
list.

This list is variable in length and consists of an arbitrary number of option
entries, each of which is formatted as shown below.

OPTION LENGTH OPTION NAME

x+0

x+4

x+optlen

OPTION VALUE

Protocol Option Entries:

OPTION LENGTH The total length of the option entry.

OPTION NAME The name of the option.

OPTION VALUE The actual value of the option.

The transport provider can impose some additional structure on the option name
field (for example, the option name can identify a protocol level in addition to an
option number). This follows from the observation that with some protocol
stacks (for example, Internet), the transport user might want to set network-level
options such as source routes, as well as transport-level options. The basic
structure of an option entry is defined by the TPO DSECT, which also defines the
option names for API options.

When using the QUERY and DEFAULT forms of TOPTION, the transport user
should build an options list initializing the length and name field of each option
entry. On completion of the TOPTION function, the value of each option is
returned in the value field. When using the VERIFY and DECLARE forms, all
three fields should be initialized. On completion of the request, any value that
was invalid and negotiated is updated in place.

Concepts and Facilities 2–41

Connection-Mode Service

TUSER—Specifying or Changing an Endpoint User ID

The last service function in the miscellaneous group is TUSER. This function is
used to specify or change the user ID associated with an endpoint. If a user ID is
not specified when the endpoint is opened, it can be specified later with the
TUSER function. In interactive applications serving multiple users, the user ID
may not be known until the peer transport user has logged on. Therefore, the
TUSER function can be invoked after the peer transport user connects, and even
after data is exchanged.

The API uses two alternative structures for providing the user ID. The first is a
simple API structure consisting of a user ID, group name, and password. This
structure is called a transport endpoint user block and is mapped by the TUB
DSECT generated by the TDSECT macro instruction.
**

* SPECIFY OR CHANGE ENDPOINT USER ID AFTER TOPEN
**
SETUSRID TUSER EP=(9),USER=TUBAREA SET USER ID
 LTR 15,15 USER ID ACCEPTED?
 BNZ TUSERERR IF NOT, GO TO ERROR ROUTINE
 .
 .
 .
TUBAREA DC XL(TUBLEN)'00' TRANSPORT ENDPOINT USER BLOCK
 ORG TUBAREA+TUBUID-TUB
 DC AL1(7),CL8'CSS31J4' USER ID
 ORG TUBAREA+TUBPWD-TUB
 DC AL1(8),CL8'ROSEWOOD' PASSWORD
 ORG
 TDSECT TUBGENERATE TUB DSECT

The second structure is an Accessor Environment Element (ACEE). The ACEE is
an MVS data structure used by the resident security system for maintaining user
and security information.

Presently, the API uses this information for informative and diagnostic purposes
only. However, it is anticipated that at some future date the information
provided will be authenticated with the resident security system, and access
privileges associated with the user ID will be used to authorize access to
networking facilities.

2–42 Assembler API Concepts

Connection-Mode Service

Connection Establishment

The connection establishment phase highlights the fundamental differences
between client and server mode. The transport interface imposes a different set
of procedures in this phase for each type of transport user. The client initiates
connection establishment by requesting connection to a server at a particular
destination address. The server, on the other hand, waits for connection requests
and is notified via connect indications issued by the transport provider. The
server can either accept or reject the client's request. If the request is accepted, the
connect response issued to the transport provider causes the client to be notified
with a connect confirmation. Otherwise, a disconnect indication is issued.

These connection procedures are implemented by six of the API service
functions.

The following table lists the API service functions in alphabetical order.

Note: The column labeled M/O indicates whether a parameter is mandatory (M),
optional (O) or returned (R).

Function Parameters M/O Description

TACCEPT Endpoint ID
New Endpoint ID
Sequence Number

M
O
M

Accepts connect indication and
establishes connection to calling
transport user using designated
endpoint as the new end-point.

TCONFIRM Endpoint ID
Protocol Address

M
OR

Confirms when a connection has
been established to the called
transport user.

TCONNECT Endpoint ID
Protocol Address

M
M

Requests that a connection be
established to the designated
transport user.

TLISTEN Endpoint ID
Protocol Address
Sequence Number

M
OR
MR

Listens for connect indications.

TREJECT Endpoint ID
Sequence Number

M
M

Rejects connect indication from
calling transport user and abandons
connection establishment.

TRETRACT Endpoint ID M Retracts an outstanding TLISTEN
request.

Concepts and Facilities 2–43

Connection-Mode Service

TCONNECT—Initiating a Connection

The client initiates a connection request using the TCONNECT function. The
endpoint must be opened, bound to a local transport address, and disabled. The
destination protocol address must be provided with the request. The
TCONNECT function completes as soon as the service primitive is issued to the
transport provider. In particular, the successful completion of a TCONNECT
request does not constitute the establishment of a connection.
**

* INITIATE CONNECTION TO FTP SERVER AT 127.0.0.1
**
CONNECT TCONNECT EP=(9),ADBUF=SERVERPA,ADLEN=LTPAINET
* INITIATE CONNECT
 LTR 15,15 CONNECTION INITIATED?
 BNZ TCONNERR IF NOT, GO TO ERROR ROUTINE
**
* WAIT FOR CONNECTION ESTABLISHMENT TO BE CONFIRMED
**
CONFIRM TCONFIRM EP=(9) WAIT FOR CONFIRMATION
 LTR 15,15 CONNECTION ESTABLISHED?
 BNZ TCONFERR IF NOT, GO TO ERROR ROUTINE
 .
 . [the endpoint is now ready for data transfer]
 .
SERVERPA DC AL2(TDINET),AL2(21),AL1(127,0,0,1)
* FTP SERVER ADDRESS
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL AND TPA DSECTS
* NOTE: LTPAINET and TDINET are defined in the
* TPA and TPL macro expansions, respectively

The client must wait for confirmation. The client receives confirmation by issuing
the TCONFIRM function. TCONFIRM does not complete until a connect confirm
is issued by the transport provider, or if the request was rejected, until a
disconnect indication is received. The protocol address of the destination is
returned to the transport user. The destination protocol address should be the
same as that provided to TCONNECT. If the client does not require the protocol
address value, the corresponding parameters should be set to zero.

The client may issue the TCONFIRM function in anticipation of the server
accepting the request or may wait for explicit notification that the confirmation
was received. In the former case, and when operating in synchronous mode, the
client is suspended until the server responds. In the latter case, an asynchronous
exit routine is entered, giving notification that the confirmation arrived. The
TCONFIRM function should then be executed. It completes immediately without
suspending the issuing task. Use of exit routines is described separately in the
chapter “Program Synchronization and Control.”

If the server rejects the connection request, or some malfunction in the network
prevents establishment of the connection, a disconnect indication is issued by the
transport provider. This causes any pending TCONFIRM functions to complete
with an error, or if asynchronous exits are enabled, the disconnect exit routine is
scheduled. Therefore, the client is always notified in the event of an unsuccessful
connection attempt.

2–44 Assembler API Concepts

Connection-Mode Service

Single-Threaded and Multithreaded Servers

The procedures used by the server varies depending on its internal organization:

■ Single-threaded servers generally service one connection at a time and are
similar in complexity to clients

■ Multithreaded servers are often more complex and can service many
connections simultaneously

Single-Threaded Servers

The single-threaded server requires an opened endpoint bound to a well-known
transport address. The endpoint must also be enabled, generally with a queue
size of one. The subsequent operation of the server differs from the client in that
the client initiates a connection request and then waits, whereas the server waits
for a connection request and then responds. The mechanisms for
synchronization parallel those of the client.

TLISTEN—Receiving a
Connect Indication

The server receives connect indications using the TLISTEN function. When
TLISTEN completes, the protocol address of the client is returned to the server
in storage areas provided with the initial request. The server must use this
information to determine whether it should connect to the client and accept or
reject the request.

If the transport user anticipates the connection request and invokes the
TLISTEN function in advance, the issuing task is suspended when operating in
synchronous mode. The TLISTEN function subsequently completes when a
connect indication has been received.
**

* LISTEN FOR CONNECTION REQUESTS ARRIVING AT ENDPOINT
**
LISTEN TLISTEN EP=(9),ADBUF=CLIENTPA,ADLEN=L'CLIENTPA
* INITIATE LISTEN
 LTR 15,15 CONNECT INDICATION RECEIVED?
 BNZ TLSTNERR IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 L 7,TPLSEQNO LOAD SEQUENCE NUMBER
 DROP 1
 .
 . [server determines whether to accept or reject]
 .
CLIENTPA DS XL(LTPAINET) ADDRESS OF CLIENT
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL AND TPA DSECTS

Alternatively, the server can provide an exit routine to be scheduled when
connect indications arrive. The TLISTEN function should then be issued within
the exit routine and completes without suspension of the issuing task.

Concepts and Facilities 2–45

Connection-Mode Service

TACCEPT—Accepting
a Connect Indication

A connect indication is accepted using the TACCEPT function. The responding
protocol address should be the same as that bound to the endpoint and does
not need to be provided to the TACCEPT function.

While the transport user is ruling on whether or not to accept the connection, the
API must retain the connect indication in the endpoint's listen queue. A sequence
number is returned with the completion of TLISTEN that uniquely identifies the
entry in the queue. This sequence number must be provided with the
corresponding TACCEPT request to identify the accepted indication. Even if the
queue size is one and the intent is unambiguous, the transport user must always
supply a valid sequence number.

When the TACCEPT function completes, a connection has been established
between the client and server. The endpoint is now ready for data transfer and is
unable to receive more connect indications until the connection is released. Any
TLISTEN function issued to a connected endpoint completes with an error.
**

* ACCEPT CONNECTION IN SINGLE-THREADED MODE
**
STHREAD TACCEPT EP=(9),SEQNO=(7) ACCEPT CONNECTION REQUEST
 LTR 15,15 CONNECTION ESTABLISHED?
 BNZ TACPTERR IF NOT, GO TO ERROR ROUTINE
 .
 . [the connection can now be used for data transfer]
 .

TREJECT—Rejecting a
Connection
Indication

A connect indication is rejected using the TREJECT function. A sequence
number provided with the request identifies the rejected indication. TREJECT is
actually a disconnect service.

Since connections are established by the transport provider independently from
TU actions, a TREJECT causes the session to be abortively disconnected. Any
data that was sent (in this case—from the client), is lost, even though it may
have been acknowledged by the transport provider.

If the transport provider supports disconnect user data, user data may be
provided by the server for sending to the client with the subsequent disconnect
indication. Connection requests can be rejected for any number of reasons, and
disconnect user data is a convenient method of advising the client as to why the
request was rejected. Whether or not this facility is supported by the transport
provider can be determined easily at runtime by examining the contents of the
TIB.
**

* REJECT REQUEST FOR CONNECTION
**
REJECT TREJECT EP=(9),SEQNO=(7) REJECT CONNECTION REQUEST
 LTR 15,15 CONNECTION ABANDONED?
 BZ LISTEN IF SO, LISTEN FOR NEXT CLIENT
 .
 . [handle error condition on endpoint]

2–46 Assembler API Concepts

Connection-Mode Service

 Multithreaded Servers

A multithreaded server cannot tie up the endpoint at which it expects to receive
connection requests, and therefore must implement some additional steps.

The customary procedure is to create additional endpoints for establishing
connections and to leave the original endpoint free to listen for connect
indications. The number of additional endpoints the server is prepared to open
determines the number of simultaneous connections it is able to service. The size
of the listen queue only restricts the number of pending connect indications that
may be awaiting acceptance or rejection.
**

* ACCEPT CONNECTION IN MULTI-THREADED MODE
**
MTHREAD TOPEN DOMAIN=INET,TYPE=(COTS,ORDREL),APCB=TUAPCB
* OPEN ENDPOINT
 LTR 15,15 ENDPOINT CREATED?
 BNZ TOPENERR IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 L 6,TPLEPID LOAD NEW ENDPOINT ID
 DROP 1
 TBIND EP=(6),ADBUF=SERVERPA,ADLEN=LTPAINET,QLSTN=0, +
 OPTCD=USE BIND AND LEAVE DISABLED
 LTR 15,15 BIND SUCCESSFUL?
 BNZ TBINDERR IF NOT, GO TO ERROR ROUTINE
 TACCEPT EP=(9),SEQNO=(7),NEWEP=(6)
* ACCEPT TO NEW ENDPOINT
 LTR 15,15 CONNECTION ESTABLISHED?
 BNZ TACPTERR IF NOT, GO TO ERROR ROUTINE
 .
 . [the new endpoint is now ready for data transfer]
 .
SERVERPA DC AL2(TDINET),AL2(21),AL4(0)
* SERVER PROTOCOL ADDRESS
 TDSECT TPL,TPA,DOMAIN=INET GENERATE INET TPA DSECT
* NOTE: LTPAINET and TDINET are defined in the
* TPA and TPL macro expansions, respectively

The Listening
Endpoint

The listening endpoint is kept available for receiving connect indications by
accepting the connection to a new endpoint. The new endpoint must be opened
and disabled, then bound to the same well-known address.

The new endpoint must have been opened by the same task that opened the
endpoint receiving the connect indication. The endpoint ID is provided as a
parameter to TACCEPT, and the connection is established to the indicated
endpoint.

If the value of the endpoint ID is zero, or identifies the listening endpoint, the
connection is established to that endpoint as previously described for single-
threaded servers. Otherwise, the connection is established to the new endpoint.
When the TACCEPT function completes, the new endpoint is ready for data
transfer and the old endpoint can continue to be used for receiving connect
indications from other clients.

Concepts and Facilities 2–47

Connection-Mode Service

The server is not required to accept connect indications in the order received. If
several connect indications are available at one time, the server may receive all of
them, and using the appropriate sequence numbers, can accept or reject them in
what ever order it chooses. This technique can be used to give priority to certain
classes of clients, particularly if resources are limited (for example, endpoints).

The synchronization aspects of multithreaded mode and single-threaded mode
are similar, except that multithreaded servers must be more careful about being
suspended. This follows from the transport user needing to service many
connections, which is not possible when it is suspended for long periods. The
strategies that can be employed are to create a subtask for each connection and to
pass control of the connected endpoint to the subtask, or to implement a
dispatching loop to service individual endpoints and to use asynchronous
execution modes to prevent indefinite suspension of the task.

TRETRACT—Retracting
a Previous Listen
Request

Once the TLISTEN function is invoked at an endpoint, it normally does not
complete until a connection request arrives. If the transport user wants to
discontinue listening for connect indications, it can either close the endpoint or
retract the pending TLISTEN with a TRETRACT function. The latter has the
advantage of being able to reissue the TLISTEN function without opening a
new endpoint. The TRETRACT serves only to undo the effects of an
uncompleted TLISTEN. If the TRETRACT function completes successfully, the
state of the endpoint is as if the TLISTEN request had never been issued.
**

* RETRACT PREVIOUS LISTEN REQUEST
**
RETRACT TRETRACT EP=(9) RETRACT OUTSTANDING LISTEN
 LTR 15,15 LISTEN RETRACTED?
 BZ NOLISTEN IF SO, BRANCH AROUND
 CH 0,=AL2(TAEXCPTN) EXCEPTIONAL CONDITION?
 BNE TRETERR IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 CLI TPLERRCD,TENOLSTN LISTEN ALREADY COMPLETED?
 BNE TRETERR IF NOT, GO HANDLE ERROR
 DROP 1
NOLISTEN DS OH
 .
 . [listen has been retracted or already completed]
 .
 TDSECT TPL GENERATE TPL DSECT

2–48 Assembler API Concepts

Connection-Mode Service

Data Transfer

The distinction between client and server becomes unimportant after a
connection has been established. Each may send or receive data on the
connection, and when data transfer is complete, either may initiate its release.
During the data transfer phase, the API and the transport provider work
together to ensure the reliable transfer of data between the transport user and its
peer, without duplication or loss of data.

TLI vs. Sockets Mode

Once a connection is established, data transfer is performed in the data transfer
mode specified on the TOPEN macro. The operation of these modes is defined in
Concepts and Terminology.

Connection-Oriented Transport Service (COTS) Data Transfer Functions

The following table summarizes the API service functions implemented for data
transfer.

Function Parameters M/O Description

TRECV Endpoint ID
User Data
Residual Count

M
MR
MR

Receive data from
peer transport user.

TSEND Endpoint ID
User Data
Residual Count (TLI mode)
Sent Data Count (Socket mode)

M
M
MR

MR

Send data to peer
transport user.

Concepts and Facilities 2–49

Connection-Mode Service

Transporting User Data

These types of user data can be transferred over a transport connection:

■ Normal data is supported by all transport providers and is delivered to the
destination transport user in the same order it was received from the source.

■ Expedited data typically is associated with information of an urgent nature
and may be delivered ahead of normal data. The exact semantics of
expedited data are subject to the interpretations of the transport provider.
Furthermore, not all transport protocols support the notion of expedited
data. The TIB returned by TINFO may be examined at runtime to determine
whether a transport provider supports the transfer of expedited data.

While a given transport provider may guarantee the integrity and order of user
data, it does not guarantee that data transmitted as a single unit by one transport
user is delivered to its peer as a single unit. Data units can be split or combined
with previous or subsequent data units as long as the data is delivered in order
and without duplication. The term data unit as used here generally refers to an
arbitrary quantity of data transmitted by a transport user. If a transport
connection is likened to a pipe between a source and sink of data, the
aggregation of data as it enters the pipe may not be preserved as it exits.

This form of data transfer is called a byte stream. If the application program is
careful not to make any assumptions about the physical aggregation of data and
embeds the necessary information within the byte stream itself if message
boundaries must be preserved, then the program should be capable of operating
over the transport protocol without regard to such factors as network data loss
and retransmission, fragmentation and reassembly, timing dependencies, or
windowing constraints.

The unit of data exchanged between the transport user and the transport
interface is called a Transport Interface Data Unit (TIDU). The unit of data
exchanged between the transport user and the transport provider is called a
Transport Service Data Unit (TSDU). The maximum size of a TIDU is interface-
dependent, and the maximum size of a TSDU is provider-dependent. Both may
be determined at runtime by examining the TIB returned by the TINFO service.
The maximum size of a TSDU may be large (possibly unlimited), and in
particular, can be larger than the maximum size of a TIDU. Therefore, the API
lets a TSDU be transmitted or received as multiple TIDUs. Furthermore, the size
of each TSDU is preserved as it is transferred over the connection, but may be
received by the peer transport user as a different number of TIDUs (for example,
the size of a TIDU is a local characteristic and the size of a TSDU is a global
characteristic).

2–50 Assembler API Concepts

Connection-Mode Service

EOM/NOTEOM—
Delineating End of
Transport

The option code EOM/NOTEOM is used to delineate the end of a TSDU.

■ When sending data, the transport user must assert NOTEOM if the TSDU
will be continued with the next TIDU, or assert EOM if the TIDU contains
the end of the TSDU. In the latter case, the last byte of the TIDU
corresponds to the last byte of the TSDU.

■ When receiving data, the API sets the option code and the transport user
interprets it. That is, if the TSDU is continued with one or more TIDUs,
NOTEOM is asserted when the receive function completes, and EOM is
asserted when the end of the TSDU is received.

Option codes are asserted by the setting or clearing of flag bits in the OPTCD
field of the TPL. NOTEOM is asserted when the corresponding flag bit is set, and
EOM is asserted when the flag bit is not set.

OPTCD=EOM is the default. OPTCD=NOTEOM is ignored by the API if set by
the transport user when TSDU message boundaries are not supported by the
transport provider.

MORE/NOMORE—
Indicating Additional
Data

The option code MORE/NOMORE indicates whether or not there is more data
available.

■ For send functions, MORE indicates that the transport user has more data to
send and expects to immediately issue another send reques.

■ When MORE is indicated at the end of a receive function, it indicates that
more data is immediately available from the transport provider

MORE and NOMORE are unrelated to EOM and NOTEOM. That is, MORE
indicates there is more data available, and NOTEOM indicates that the data is
part of the same TSDU.

An indication of MORE on a send request advises the transport provider that a
subsequent send request is assured and probably follows immediately. The
transport provider may want to delay sending any partially filled protocol data
unit hoping to append data from the subsequent send. On the other hand, an
indication of NOMORE is a signal that no more data may follow, and any
partially filled data unit should be transmitted immediately.

For endpoints using TCP as the transport protocol, an indication of NOMORE
becomes a PUSH at the transport provider interface. An indication of MORE on
the completion of a receive request serves only to signal the user that more data
is immediately available for a subsequent receive request. If the request is issued
in synchronous mode, the issuing task is not suspended.

Concepts and Facilities 2–51

Connection-Mode Service

NORMAL/EXPEDITE—
Indicating the Type of
Data

The option code NORMAL/EXPEDITE indicates the type of data. On a send
request, NORMAL indicates that the user data should be sent as normal data.
EXPEDITE indicates that the data should be sent as expedited data. Similarly,
on the completion of a receive request, NORMAL and EXPEDITE indicate the
type of data transferred.

The interpretation applied by the transport provider may vary. For example, an
ISO TP provider actually transfers the data as an expedited data unit and
delivers it to the receiver as a separate data unit, perhaps ahead of undelivered
normal data. The maximum size of an expedited data unit can be determined by
examining the TIB. TCP, on the other hand, does not transfer expedited data per
se, but rather transmits an urgent condition and records the location in the data
stream where the urgent condition occurred. The receiver is then signaled that
the urgent condition exits, which persists until the recorded position in the data
stream is reached.

The transport user does not request to receive expedited data; rather, the user is
told on completion of a request whether or not expedited data was transferred.
For the ISO transport user, the interpretation is quite simple: the data transferred
is expedited data and should be handled in a manner appropriate for the
application program. For the Internet transport user, the interpretation is quite
different. In this case, the EXPEDITE option code indicates there is some urgent
data in the data stream, and the transport user should process the current
(normal) data as expeditiously as possible in order to receive the urgent data. In
many cases, this may mean discarding data up to the point of urgent data.
Urgent data has no actual length, and begins with the first data unit received
without the EXPEDITE option code set.

Sending and Receiving Data

Data is sent with the TSEND function and received with the TRECV function.
The user data parameter identifies the storage area containing the data to be sent
or the storage area in which the API returns the received data.

When a TRECV request completes:

■ The user data parameter is updated to reflect the actual amount of data
received

■ The transport user also must set the appropriate option codes for TSEND

■ The API sets the option codes prior to the completion of TRECV

The user data may be in direct or indirect format as described in Transport User
Data. The total amount of user data cannot exceed the limits defined for send
and receive TIDUs. This information can be found in the TIB.

2–52 Assembler API Concepts

Connection-Mode Service

When a TSEND function is executed, the user data is immediately moved into an
internal buffer allocated in the address space of the transport provider. This
prevents the transport user's storage area from being tied up until the data is
sent and allows swapping of the address space. Similarly, TRECV reserves the
appropriate amount of space in the transport provider's address space for
receiving the requested data. The data can then be received from the transport
provider while the transport user's address space is swapped out. On
completion, the address space is swapped back in, and the data is moved into the
transport user's storage area. The total amount of send and receive buffering that
can be in use by an endpoint is limited. Default values are defined separately for
send and receive at installation time and can be modified with the TOPTION
service. The maximum permitted values are defined in the TIB.
**

* SEND LOGON PROMPT AND RECEIVE REPLY
**
LOGON TSEND EP=(9),DABUF=PROMPT,DALEN=PROMPTLN, +
 OPTCD=NOMORE PROMPT FOR USER ID
 LTR 15,15 DATA SENT SUCCESSFULLY?
 BNZ TSENDERR IF NOT, GO TO ERROR ROUTINE
 TRECV EP=(9),DABUF=REPLY,DALEN=L'REPLY RECEIVE REPLY
 LTR 15,15 REPLY RECEIVED?
 BNZ TRECVERR IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 .
 .[parse reply data]
 .
 TM TPLOPCD2,TOMORE MORE DATA TO RECEIVE?
 BO RECVMORE IF SO,GO RECEIVE IT
 DROP 1
 .
 . [this is a contrived example]
 .
PROMPT DC AL1(13),AL1(37) NEW LINE
 DC C'PLEASE LOG ON' HERALD MESSAGE
 DC AL1(13),AL1(37) NEW LINE
 DC AL1(13),AL1(37) NEW LINE
 DC C'ENTER USER ID: ' USER ID PROMPT
PROMPTLN EQU *-PROMPT
REPLY DS XL80 REPLY AREA
 TDSECT TPL GENERATE TPL DSECT

The transport user can anticipate the arrival of data and issue a TRECV request
in advance.

■ If no data is available and the request was issued in synchronous mode, then
the issuing task is suspended until data is received

■ If no data is available and the request was issued in asynchronous mode, the
request remains pending and completes asynchronously when a data
indication arrives

Alternatively, the transport user can wait until data is available, and then receive
it without suspending the task. The latter method is enabled by specifying an
exit routine when the endpoint (or APCB) is opened. Separate exit routines can
be specified for normal or expedited data.

Concepts and Facilities 2–53

Connection-Mode Service

Unlike many of the other transport service functions, the API lets more than one
TSEND or TRECV be outstanding at any given time on any given endpoint. This
is to allow a sufficient amount of overlap with transport provider processing and
latency due to physical network I/O. Other functions must normally complete
before another function can be issued at the same endpoint. The number of
pending send and receive requests is limited, however. Like the preceding buffer
values, the default send and receive limits are defined at installation time and
can be modified with the TOPTION service. The maximum permitted values are
defined in the TIB. The buffer size and pending request limits cannot be changed
after the first TSEND or TRECV function is issued.

User Data Length

The total length associated with the user data parameter is simply the user data
length for a direct request or the sum of all segment lengths for an indirect
request. This length must not exceed any one of these values:

■ The maximum size of a transport interface data unit

■ The maximum size of a transport service data unit

■ The negotiated amount of internal buffer space minus the total accumulated
length of all other pending requests

Often an application program uses fixed-length send and receive buffers in its
own address space. In this case, the transport user can prevent overrunning API
buffer space by limiting the number of buffers and choosing an appropriate
value for the maximum number of pending requests.

Connection Release

At any point during data transfer, either user can release a transport connection.
The transport provider also can release the connection as the result of some
nonrecoverable network malfunction or protocol error.

The API supports these forms of connection release:

■ An abortive release, where the connection is released immediately, and
undelivered user data may be discarded

■ An orderly release, where all previously sent user data is delivered to the
transport user before the connection is released

All transport providers must support abortive release. Orderly release is optional
and must be requested when the endpoint is opened.

2–54 Assembler API Concepts

Connection-Mode Service

The following table summarizes the API service functions for connection release.

Function Parameters M/O Description

TCLEAR Endpoint ID
Sequence Number
Reason Code

M
MR
MR

Clear (receive) pending disconnect indication.

TDISCONN Endpoint ID M Release connection, or abandon connection
establishment.

TRELACK Endpoint ID M Acknowledge (receive) pending orderly release
indication.

TRELEASE Endpoint ID M Request the orderly release of a connection.

TDISCONN—Initiating Abortive Release

A transport user initiates abortive release by invoking the TDISCONN service
function. This causes the connection to be released immediately, and a
disconnect indication is delivered to the peer transport user. Any user data
previously sent with a TSEND function that was not delivered to the destination
transport user may be discarded.
**

* ABORT CONNECTION BY INITIATING DISCONNECT
**
ABORT TDISCONN EP=(9) INVOKE DISCONNECT FUNCTION
 LTR 15,15 CONNECTION RELEASED?
 BNZ TDISCERR IF NOT, GO TO ERROR ROUTIN
 .
 . [connection is released, no data transfer is allowed]
 .

The API learns of an abortive release by receiving a disconnect indication from
the transport provider. The transport user is notified of this occurrence either by
terminating the next service request with an error indicating the disconnect or by
scheduling the user's exit routine, if one has been enabled.

Concepts and Facilities 2–55

Connection-Mode Service

TCLEAR—Return Disconnect Information

When an abortive release occurs, the transport user must immediately terminate
data transfer and respond by invoking the TCLEAR service function. The
purpose of the TCLEAR service is to return information associated with the
disconnect. TCLEAR returns a disconnect reason code. The disconnect reason
code is specific to the underlying transport protocol and should not be
interpreted by application programs that intend to be independent of protocol.
**

* TRECV COMPLETED WITH ERROR -- CHECK FOR DISCONNECT
**
 USING TPL,1
TRECVERR CH 15,=AL2(TRFAILED) ROUTINE FAILURE?
 BNE FATAL IF NOT, NO RECOVERY
 CH 0,=AL2(TAINTEG) DATA INTEGRITY ERROR?
 BNE NOTDISC IF NOT, CAN'T BE DISCONNECT
 CLI TPLERRCD,TEDISCON DISCONNECT INDICATION?
 BNE NOTDISC IF NOT, DON'T ISSUE TCLEAR
 TCLEAR EP=(9) ACKNOWLEDGE DISCONNECT
 LTR 15,15 TCLEAR FAILED?
 BNZ FATAL HOW CAN THAT BE?
 .
 . [connection is released, no data transfer is allowed]
 .
 TDSECT TPL GENERATE TPL DSECT

Using TDISCONN and TCLEAR During Connection Establishment

Although TDISCONN and TCLEAR are generally invoked at the end of the data
transfer phase, they can also be used during connection establishment. It was
already mentioned that TREJECT is a special case of TDISCONN, issued by the
server to reject a connection request. TDISCONN can also be issued by the client
to revoke a connection request. In this case, a disconnect indication is presented
to the server when it attempts to accept or reject a connection. The server must
then invoke TCLEAR to receive the disconnect information. A sequence number
is returned to identify the connection request that was revoked. A disconnect
indication may also be issued if connection establishment is abandoned by the
transport provider.

2–56 Assembler API Concepts

Connection-Mode Service

TRELEASE—Orderly Release Procedure

The orderly release procedure requires two steps by each transport user. The
first user to complete data transfer initiates orderly release by invoking the
TRELEASE service function. This function informs the transport provider (and
peer transport user) that no more data is sent by the issuing transport user. The
transport user that initiated the release must continue receiving data, and the
peer transport user may continue sending data until all such data is transferred.
At that time, the peer transport user invokes its equivalent of the TRELEASE
function, indicating that it is now ready to release the connection. The connection
is released only after both users have requested an orderly release and received
the corresponding indication from the other user.
**

* NO MORE DATA TO SEND--RELEASE CONNECTION GRACEFULLY
**
RELEASE TRELEASE EP=(9) INITIATE CONNECTION RELEASE
 LTR 15,15 RELEASE STARTED?
 BNZ TRLSEERR IF NOT, CHECK FOR DISCONNECT
 .
 . [receive data until release indication arrives]
 .
 TRELACK EP=(9) ACKNOWLEDGE RELEASE INDICATION
 LTR 15,15 CONNECTION RELEASED?
 BNZ TRLSEERR ERROR OCCURRED

TRELACK—Checking for Orderly Release

The release indication is presented to the transport user in a manner similar to all
other API indications:

■ An error is generated on the completion of the first TRECV function after all
data is received

■ An asynchronous exit routine is scheduled if enabled by the transport user

In either case, the transport user must acknowledge the indication by invoking
the TRELACK service function. TRELACK informs the transport provider that it
has received all of the data and is aware of the pending release condition.
**

* TRECV COMPLETED WITH ERROR -- CHECK FOR ORDERLY RELEASE
**
 USING TPL,1
TRECVERR CH 15,=AL2(TRFAILED) ROUTINE FAILURE?
 BNE FATAL IF NOT, NO RECOVERY
 CH 0,=AL2(TAINTEG) DATA INTEGRITY ERROR?
 BNE NOTRLSE IF NOT, CAN'T BE RELEASE
 CLI TPLERRCD,TERELESE ORDERLY RELEASE INDICATION?
 BNE NOTRLSE IF NOT, DON'T ISSUE TRELACK
 TRELACK EP=(9) ACKNOWLEDGE RELEASE INDICATION
 LTR 15,15 TRELACK FAILED?
 BNZ CHKDISC PERHAPS DISCONNECTED
 .
 . [continue sending data until no more to send]
 .

Concepts and Facilities 2–57

Connection-Mode Service

 TRELEASE EP=(9) NOW RELEASE CONNECTION
 LTR 15,15 CONNECTION RELEASED?
 BNZ CHKDISC IF NOT, CHECK FOR DISCONN.
 .
 . [graceful release is now complete]
 .
 TDSECT TPL GENERATE TPL DSECT

The transport connection is not released until both functions are invoked by each
transport user. The order in which they are invoked depends on which transport
user initiates the release. Both users can initiate the release at the same time, and
all race conditions are resolved by the API and the transport provider.
TRELACK can also be issued before the indication is received. In this case, the
request remains pending and does not complete until a release indication is
received from the transport provider. If the transport user is operating in
synchronous mode, the task is suspended until the release indication arrives.
Otherwise, the transport user is free to issue additional requests.

Note: This mode is useful when data transfer is uni-directional, and the
transport user does not expect to receive any data.

Once TRELEASE is invoked, TSEND requests cannot be issued. Similarly, no
TRECV request can be issued once TRELACK is issued. There are no release data
and reason codes associated with either function. The only parameters
interpreted by TRELEASE and TRELACK are the common parameters, primarily
the endpoint ID.

An orderly release can be interrupted (that is, aborted) by a disconnect
indication. When this happens, the transport user must respond by invoking
TCLEAR as described in TCLEAR—Return Disconnect Information.

2–58 Assembler API Concepts

Connectionless-Mode Service

Connectionless-Mode Service
Connectionless-mode service does not require a connection for the transfer of
data between two transport users. This mode of service is well suited to those
applications where the interaction between two transport users is short-term,
perhaps to transfer just a single unit of data, and where the overhead required to
establish and release a connection may be prohibitive. Transaction-based
processes characterized by simple request/response interactions are examples of
applications where connectionless-mode service might be more appropriate.

Since a connection does not exist to identify the destination of data transfer and
the options that affect the transfer, this information must be supplied with each
service access. The source and destination are identified by their transport
service access point address, just as they are for connection-mode service.
However, each data unit transferred can have a different destination and may
have no relationship at all to previous and subsequent data units. The
underlying protocols that provide the connectionless service make no guarantee
with respect to the order or duplication of data units. Nevertheless, they do
guarantee that any data unit delivered is delivered intact and without
corruption.

Connectionless-mode service has two phases:

■ Local endpoint management (identical to connection-mode service in all but
a few respects)

■ Data transfer

Local Endpoint Management

The API service functions listed in Connection-Mode Service also apply to
connectionless-mode. An endpoint must be opened that selects the
communications domain and transport provider, and a local protocol address
must be bound to the endpoint. At this time, the endpoint is ready for data
transfer. After data transfer is complete, the endpoint can be unbound from its
protocol address and closed. The miscellaneous functions that provide protocol
information, manipulate options, and specify a user ID can also be used. In
general, the local management of a connectionless-mode endpoint is identical to
a connection-mode endpoint except for a few minor differences.

Concepts and Facilities 2–59

Connectionless-Mode Service

TOPEN—Opening an Endpoint

TOPEN is used to open an endpoint. Connectionless-mode service is selected by
specifying CLTS as the service type, and the communications domain can be any
of the domains described for connection-mode service. Thus, the TYPE and
DOMAIN parameter select the transport provider and the protocol that provides
the service. Alternatively, a protocol number or service ID can be used to make
this selection. The APCB parameter identifies an opened APCB that, in turn,
identifies the instance of the API to be used as the interface.
**

* INITIALIZE CONNECTIONLESS-MODE ENDPOINT USING UDP PROTOCOL
**
EPINI TOPEN DOMAIN=INET,TYPE=CLTS,APCB=TUAPCB OPEN ENDPOINT
 LTR 15,15 ENDPOINT CREATED?
 BNZ TOPENERR IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 L 9,TPLEPID LOAD NEW ENDPOINT ID
 DROP 1
 TBIND EP=(9),ADBUF=CLIENTPA,ADLEN=L'CLIENTPA,QLSTN=0, +
 OPTCD=ASSIGN ASSIGN TRANSPORT ADDRESS
 LTR 15,15 BIND SUCCESSFUL?
 BNZ TBINDERR IF NOT, GO TO ERROR ROUTINE
 .
 . [client can now send and receive datagrams]
 .
TUAPCB APCB AM=TLI,APPLID=EXAMPLE DEFINE TRANSPORT USER
CLIENTPA DS XL(LTPAINET) CLIENT PROTOCOL ADDRESS
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL AND TPA DSECTS

Any exit routines required to service the endpoint must be specified with the
TOPEN function, if not specified when the APCB was opened.

These asynchronous protocol exits are supported for CLTS endpoints:

DATA Datagram received.

DGERR Datagram error received.

The identifier returned by TOPEN must be used in all subsequent references to
the endpoint. When the endpoint is no longer required, or control must be
passed to another task or address space, the TCLOSE service function should be
invoked.

The transport interface defines an inherent client/server relationship between
two transport users when establishing a connection with connection-mode
service. However, a similar relationship is not reflected in the definition or use of
connectionless-mode service functions.

2–60 Assembler API Concepts

Connectionless-Mode Service

Note: It is the context of the application, not the transport interface that defines
one transport user as a server and another as a client. There are similarities with
connection-mode service (for example, the server is often passive and waits for a
request from a client whose address is unknown in advance; the client is the
active participant that initiates the interaction and contacts the server at a well-
known address).

Using TBIND with Connectionless Mode

Binding of protocol addresses via the TBIND function closely parallels
connection-mode service. The transport user in the role of a client generally
requests the API to assign the local transport address, while the server specifies a
well-known address of its choosing. However, connectionless endpoints must
always be disabled, and the QLSTN parameter must be zero when issuing a
TBIND request.

Terminating a Connectionless Mode Endpoint

Any protocol address bound to an endpoint can be unbound by invoking the
TUNBIND function. Finally, the endpoint is terminated with the TCLOSE
function.
**

* TERMINATE USE OF CONNECTIONLESS-MODE ENDPOINT
**
EPTERM TUNBIND EP=(9) UNBIND PROTOCOL ADDRESS
 LTR 15,15 UNBIND SUCCESSFUL?
 BNZ TUBNDERR IF NOT, GO TO ERROR ROUTINE
 TCLOSE EP=(9) CLOSE AND DELETE ENDPOINT
 .
 . [endpoint must not be referenced after closing]
 .

Concepts and Facilities 2–61

Connectionless-Mode Service

Using TADDR to Retrieve Addresses

The TADDR service can be used to retrieve local and remote protocol addresses.

Note: However, if not carefully used, the results may be incorrect.

When the LOCAL option code is specified to retrieve the local protocol address,
the transport address returned is always the address currently bound to the
endpoint, and the network address is the local network address through which
the most recent datagram was transferred. When REMOTE is specified, the
protocol address contains the transport and network address of the source of the
last received datagram or the destination of the last sent datagram. If any send or
receive requests are in progress at the time TADDR is executed, the results are
unpredictable. The transport user should either quiesce data transfer before
issuing a TADDR request, or rely only on addresses returned with other service
functions.

Specifying Protocol Options

Protocol options can be negotiated with the TOPTION service. Any options
negotiated remain in effect until changed with a subsequent TOPTION request.
As an alternative, the transport user can specify protocol options with each
datagram transmitted. Protocol options are protocol-dependent and should be
avoided by application programs that may need to operate with other transport
protocols at some future date. As usual, the TINFO service can be used to
determine the characteristics and limits of the transport provider and the
underlying protocol.

2–62 Assembler API Concepts

Connectionless-Mode Service

Data Transfer

A connectionless-mode endpoint bound to a local protocol address is
immediately ready to send and receive data. Data is transferred as individual
units of data, sometimes referred to as datagrams.

CLTS Data Transfer
Functions

The following table lists the service functions supporting connectionless data
transfer.

Function Parameters M/O Description

TRECVERR Endpoint ID
Protocol Address
Datagram Error Code

M
OR
MR

Receive pending datagram
error indication.

TRECVFR Endpoint ID
Protocol Address
User Data
Residual Count

M
OR
MR
MR

Receive a datagram and its
accompanying source address

TSENDTO Endpoint ID
Protocol Address
User Data
Residual Count

M
M
M
MR

Send datagram to designated
destination.

SENDTO—Sending
Outgoing Datagrams

Each outgoing datagram is sent by invoking the TSENDTO service function
and must be accompanied by the protocol address of the destination transport
user. The sending transport user may also specify protocol options (for
example, quality of service parameters) that should be associated with the
transfer of data. When the datagram arrives at the destination, the unit of data
and its associated protocol options are delivered to the transport user. The size
of the datagram is preserved. That is, a datagram is not split or combined with
other datagrams.

Each data unit is treated individually in accordance with the quality of service
parameters provided with the protocol options parameter. However, in the
absence of protocol options, all data is treated the same. In particular, the API
does not support normal and expedited data classes as it does for connection-
mode, and the NORMAL and EXPEDITED option codes should not be indicated.
Also, MORE and NOMORE have no meaning in the context of sending
datagrams and, if indicated, are ignored.
**

Concepts and Facilities 2–63

Connectionless-Mode Service

* BOUNCE A DATAGRAM OFF OF UDP ECHO SERVER AT 127.0.0.1
**
SENDECHO TSENDTO EP=(9),ADBUF=SERVERPA,ADLEN=LTPAINET,DABUF=ECHOSEND, +
 DALEN=ECHOLEN SEND DATAGRAM TO ECHO PORT
 LTR 15,15 DATAGRAM SENT?
 BNZ TSNDTOER IF NOT, GO TO ERROR ROUTINE
 .
 . [should probably set timer in case datagram is lost]
 .
RECVECHO TRECVFR EP=(9),ADBUF=SOURCEPA,ADLEN=LTPAINET,DABUF=ECHORECV, +
 DALEN=ECHOLEN RECEIVE ECHOED DATAGRAM
 LTR 15,15 DATAGRAM RECEIVED?
 BNZ TRCVFRER IF NOT, GO TO ERROR ROUTINE
 CLC SOURCEPA,SERVERPA FROM ECHO SERVER?
 BNE RECVECHO IF NOT, GO RECV. SOME MORE
 USING TPL,1
 L 2,TPLDALEN LOAD LENGTH OF RECEIVE DATA
 C 2,=A(ECHOLEN) SAME AS AMOUNT SENT?
 BNE ECHOERR IF NOT, LOG ERROR
 CLC ECHORECV(ECHOLEN),ECHOSEND DOES DATA MATCH?
 BNE ECHOERR IF NOT, GO LOG IT
 B SENDECHO ELSE, SEND ANOTHER
 .
 .
 .
SERVERPA DC AL2(TDINET),AL2(7),AL1(127,0,0,1) SERVER PROTOCOL ADDR
SOURCEPA DS XL(LTPAINET) SOURCE PROTOCOL ADDRESS
ECHOSEND DC C'NOW IS THE TIME FOR ALL GOOD DATAGRAMS ' ECHO-GRAM
 DC C'TO GO BACK FROM WHENCE THEY CAME'
ECHOLEN EQU *-ECHOSEND
ECHORECV DS XL(ECHOLEN+1) RECEIVE BUFFER
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL AND TPA DSECTS
* NOTE: LTPAINET and TDINET are defined in the
* TPA and TPL macro expansions, respectively

The datagram must be furnished to the API in one service access. That is, the
datagram must be contained in a single transport interface data unit, and the
EOM and NOTEOM option codes are not interpreted by the TSEND function.
However, the data can be provided in direct or indirect format. The length of an
outgoing datagram must be within the TIDU and TSDU send limits as defined in
the TIB, obtained with the TINFO service.

TRECVFR—Receiving
Incoming Datagrams

The TRECVFR service function receives incoming datagrams. A storage area
must be provided for the datagram, and if the source address and
accompanying protocol options are to be returned with the data, their
respective storage areas must be identified.

When the TRECVFR function completes:

■ The data and source protocol address are returned in the storage areas
provided

■ Their lengths are updated to reflect the actual amount of data returned

2–64 Assembler API Concepts

Connectionless-Mode Service

A single datagram can be received with multiple service accesses. The EOM and
NOTEOM option codes are asserted as appropriate to indicate when the end of
the datagram is received. MORE is asserted to indicate that additional datagrams
are available to be read. When MORE is asserted, the transport user can issue a
TRECVFR function and know that it completes immediately without suspending
the issuing task for an extended period.

The API allocates internal send and receive buffers for moving data between
address spaces, and manages these buffers in a manner similar to connection-
mode service. A residual byte count is returned when either a TSENDTO or
TRECVFR function completes. Multiple instances of these functions may be
invoked without waiting for the first to complete. The limits defined at
installation time can be retrieved with the TINFO service, and the values in effect
for the endpoint can be changed using the TOPTION service.

A TSENDTO request can complete as soon as the datagram is passed to the
transport provider. Therefore, subsequent protocol errors such as nonreachable
destinations must be signaled to the transport user later. If the transport user
enabled the datagram error exit, its exit routine is scheduled when a datagram
error indication arrives. Otherwise, the next TSENDTO or TRECVFR request
completes with an error. In either case, the transport user must receive the
indication by invoking the TRECVERR service function. The destination address
of the datagram, along with any protocol options specified, is returned to the
transport user. A protocol-dependent error code is also returned.

Note: Application programs that intend to remain protocol-independent should
not interpret this error code and should use it for diagnostic purposes only.
**

* TRECVFR COMPLETED WITH ERROR --CHECK FOR DATAGRAM ERROR
**
 USING TPL,1
TRCVFRER CH 15,=AL2(TRFAILED) ROUTINE FAILURE?
 BNE FATAL IF NOT, NO RECOVERY
 CH 0,=AL2(TAINTEG) DATA INTEGRITY ERROR?
 BNE NOTDGERR IF NOT, CAN'T BE DATAGRAM ERROR
 CLI TPLERRCD,TEPROTO DATAGRAM ERROR INDICATION?
 BNE NOTDGERR IF NOT, DON'T ISSUE TRECVERR
 TRECVERR EP=(9),ADBUF=DGERRPA,ADLEN=L'DGERRPA
* GET ERROR INFO
 LTR 15,15 TRECVERR FAILED?
 BNZ FATAL WHOOPS, HOW CAN THAT BE?
 L 2,TPLDGERR LOAD DATAGRAM ERROR CODE
 .
 . [the dest. addr and error code should be logged]
 .
DGERRPA DS XL(LTPAINET) DATAGRAM ERROR PROTOCOL ADDRESS
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL DSECT

Concepts and Facilities 2–65

Connectionless Service with Associations

Connectionless Service with Associations
The interaction between two connectionless-mode transport users may be more
involved than just a simple request/response transaction, and a client can be
engaged in a conversation with a server for an extended period. In this case, the
transport user may prefer the benefits of a long-term connection afforded by
connection-mode service, but prefer the efficiency and simplicity of
connectionless-mode data transfer. The API accommodates this by providing a
service that is a mixture of these two modes. The API uses the term association to
distinguish this type of service from the true transport connection supported by
connection-mode service and the pure form of connectionless-mode service.

An association is used to communicate with a connectionless-mode transport
user for an extended period. The association is established by the local transport
user in exactly the same manner as a real transport connection is established
using connection-mode services. The distinction between client and server is also
reflected in the manner in which the association is established. After an
association exists, data transfer proceeds as if a connection was established.
Therefore, after data transfer is complete, the association must be released as if it
were a real connection. Simply stated, establishing an association with another
transport user allows an extended exchange of data between a client and server
without having to provide or process protocol addresses with every transfer
request.

The API performs these services using the standard services of the connection-
less mode transport provider (for example, the local transport user issues
connection-mode service requests and the API simulates the services of a
connection-mode provider). The real transport provider is used only for data
transfer, and the existence of an association is transparent to the remote transport
user. Since the underlying protocol is connectionless, the characteristics of data
transfer are those of connectionless-mode service—the data stream between the
associated transport users is a sequence of datagrams, some of which may be lost
or duplicated.

2–66 Assembler API Concepts

Connectionless Service with Associations

ASSOC—Requesting Association-Mode Service

The association-mode service must be requested when the endpoint is opened.
This is done by including the ASSOC sublist parameter when CLTS is requested
as the service type. All other parameters of the TOPEN request apply as if a
connection-mode endpoint is being created. In particular, the exits supported for
associations are the same as those supported for connections. Once the endpoint
is opened, local endpoint management proceeds as if a transport connection is
going to be established, except that transport addresses must be consistent with
the underlying protocol.

That is, if the endpoint was created in the internet (INET) domain:

■ The underlying protocol is UDP

■ The transport addresses must be UDP port numbers and not TCP port
numbers

**

* CREATE AN ENDPOINT FOR SERVER-MODE ASSOCIATIONS
**
 USING TPL,1
EPINIT TOPEN DOMAIN=INET,TYPE=(CLTS,ASSOC),APCB=TUAPCB
* OPEN ENDPOINT
 LTR 15,15 ENDPOINT CREATED?
 BNZ TOPENERR IF NOT, GO TO ERROR ROUTINE
 L 9,TPLEPID LOAD NEW ENDPOINT ID
 TBIND EP=(9),ADBUF=SERVERPA,ADLEN=LTPAINET,QLSTN=1, +
 OPTCD=USE BIND SERVER TRANSPORT ADDRESS
 LTR 15,15 BIND SUCCESSFUL?
 BNZ TBINDERR IF NOT, GO TO ERROR ROUTINE
TUAPCB APCB AM=TLI,APPLID=EXAMPLE DEFINE TRANSPORT USER

Concepts and Facilities 2–67

Connectionless Service with Associations

Establishing Client Associations

Establishing an association to a server-mode transport user is straightforward.
The TCONNECT service function is invoked giving the (connectionless) protocol
address of the server and any protocol options to associate with data transfer.
This information is retained by the API and used with subsequent service
primitives issued to the transport provider.
**

* ESTABLISH A CLTS ASSOCIATION WITH TFTP SERVER AT 127.0.0.1
**
EPINIT TOPEN DOMAIN=INET,TYPE=(CLTS,ASSOC),APCB=TUAPCB
* OPEN ENDPOINT
 LTR 15,15 ENDPOINT CREATED?
 BNZ TOPENERR IF NOT, GO TO ERROR ROUTINE
 USING TPL,1
 L 9,TPLEPID LOAD NEW ENDPOINT ID
 DROP 1
 TBIND EP=(9),ADBUF=CLIENTPA,ADLEN=L'CLIENTPA,QLSTN=0, +
 OPTCD=ASSIGN ASSIGN TRANSPORT ADDRESS
 LTR 15,15 BIND SUCCESSFUL?
 BNZ TBINDERR IF NOT, GO TO ERROR ROUTINE
 TCONNECT EP=(9),ADBUF=SERVERPA,ADLEN=LTPAINET MAKE ASSOCIATION
 LTR 15,15 ASSOCIATION INITIATED?
 BNZ TCONNERR IF NOT, GO TO ERROR ROUTINE
 TCONFIRM EP=(9) WAIT FOR CONFIRMATION
 LTR 15,15 ASSOCIATION CONFIRMED?
 BNZ TCONFERR IF NOT, GO TO ERROR ROUTINE
 .
 . [the endpoint is now ready for data transfer]
 .
TUAPCB APCB AM=TLI,APPLID=EXAMPLE DEFINE TRANSPORT USER
SERVERPA DC AL2(TDINET),AL2(69),AL1(127,0,0,1) TFTP SERVER ADDR
CLIENTPA DS XL(LTPAINET) CLIENT PROTOCOL ADDRESS
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL AND TPA DSECTS
* NOTE: LTPAINET and TDINET are defined in the
* TPA and TPL macro expansions, respectively

Example A subsequent TSEND request causes the data to be sent as a datagram to the
remote transport user using the protocol address supplied to the TCONNECT
function. Incoming datagrams are filtered using the local protocol address, and
only those that match the filter are delivered to the transport user; everything
else is discarded. The transport provider confirms the association by issuing a
confirm indication, which must be received by invoking the TCONFIRM service.
The transport user's confirm indication exit routine is scheduled, if appropriate.

2–68 Assembler API Concepts

Connectionless Service with Associations

Establishing Server Associations

A transport user operating in server mode can be single-threaded or
multithreaded. The server listens for connect indications by enabling the
appropriate exit routine or by invoking the TLISTEN service function.

A connect indication is generated whenever a datagram is received from a
source for which no association exists. The datagram is queued until the connect
indication is accepted or rejected by a TACCEPT or TREJECT request. The value
of QLSTN, specified in the TBIND request that enabled the endpoint, defines the
number of datagrams from unique sources that can be queued at one time. The
association can be accepted to a new endpoint if the server is operating in
multithreaded mode. Once the association is established, incoming datagrams
are routed to the appropriate endpoint and are received by invoking the TRECV
function.
**

* ESTABLISH A CLTS ASSOCIATION AS A SINGLE-THREADED SERVER
**
 USING TPL,1
LISTEN TLISTEN EP=(9),ADBUF=CLIENTPA,ADLEN=L'CLIENTPA INITIATE LISTEN
 LTR 15,15 DATAGRAM RECEIVED?
 BNZ TLSTNERR IF NOT, GO TO ERROR ROUTINE
 L 7,TPLSEQNO LOAD SEQUENCE NUMBER
 TACCEPT EP=(9),SEQNO=(7) ACCEPT CONNECT INDICATION
 LTR 15,15 ASSOCIATION ESTABLISHED?
 BNZ TACPTERR IF NOT, GO TO ERROR ROUTINE
 .
 . [the endpoint is now ready for data transfer]
 .
ENDDATA TDISCONN EP=(9) SIMULATE DISCONNECT
 LTR 15,15 ASSOCIATION TERMINATED?
 BZ LISTEN IF SO, LISTEN FOR NEXT CLIENT
 .
 . [handle disconnect error]
 .
SERVERPA DC AL2(TDINET),AL2(69),AL4(0) TFTP TRANSPORT ADDRESS
CLIENTPA DS XL(LTPAINET) CLIENT PROTOCOL ADDRESS
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL AND TPA DSECTS

Data Transfer with
Associations

All data transfer is executed with TSEND and TRECV functions.

The expedited data option is not supported. However, since datagram
boundaries are preserved, the notion of TSDU boundaries is supported, and
EOM/NOTEOM is set accordingly for inbound data. MORE indicates the
presence of another datagram on input and is ignored on output.

Concepts and Facilities 2–69

Local Endpoint Control

Releasing
Associations

The association is released in the same fashion as a connection. Since all
connection-oriented functions are simulated by the API, orderly release is
always available and need not (and should not) be requested when the
endpoint is opened.

Invoking TRELEASE causes a release indication to be generated after the last
available datagram is received. The indication must be acknowledged with
TRELACK. Since an association has no end-to-end significance, the remote
transport user cannot initiate the release of an association. Therefore, the server
must have some method for determining when the client no longer requires
service and then terminate the association.

Local Endpoint Control
This section describes local endpoint control processing and the functions it uses.

The following table lists local API functions used to control processing at an
endpoint

Function Parameters M/O Description

TCHECK Endpoint ID M Waits for completion and schedule error
recovery routine if completed abnormally.

TERROR Endpoint ID M Analyzes error and generates messages in
WTO list format.

TEXEC Endpoint ID M Reexecutes previous function.

TSTATE Endpoint ID M Gets current endpoint state.

Function Differences These functions generally differ from the service functions described in the
previous sections in these major respects:

■ Control functions are processed within the transport user's local system

■ Control functions have the address of a parameter list (TPL) used with a
previous service request as their only operand

The important distinction for these control functions is that they are not a new
request for service to be processed by the API or the transport provider. Rather,
they represent a particular control process to be performed in connection with a
previous service request.

2–70 Assembler API Concepts

Local Endpoint Control

Such control processes include:

■ Synchronizing with the completion of an outstanding request

■ Scheduling synchronous error handling routines

■ Generating diagnostic error messages

■ Reexecuting a previous request

■ Determining the state of an endpoint after the completion of a service
function

TCHECK

Note: TCHECK is perhaps the most widely used and most important control
function.

The sole parameter to the TCHECK function is the address of an active TPL
associated with a previous service request.

TCHECK performs these important functions:

■ Synchronizes the application program with the completion of the service
request

■ Sets the TPL inactive (and reusable for another request)

■ Schedules the appropriate error recovery routine if the request completes
abnormally

When application programs are operating in synchronous mode, TCHECK is
executed automatically at the end of each service request. In the previous
programming examples, the default operating mode was synchronous.
Asynchronous mode must be requested by asserting the ASYNC option code
when a service request is issued. In this case, control is returned immediately to
the application program after the request has been accepted, and the application
program can perform other processing. However, at some point the application
program must execute a TCHECK function using the TPL address of the
pending request. Thus, in asynchronous mode, TCHECK must be invoked for
every instance of an API service request. TCHECK is discussed in more detail in
the chapter “Program Synchronization and Control.”

Concepts and Facilities 2–71

Local Endpoint Control

**

* LISTEN FOR CONNECTION REQUESTS IN ASYNCHRONOUS MODE
**
LISTEN TLISTEN EP=(9),ADBUF=CLIENTPA,ADLEN=L'CLIENTPA,ECB=INTERNAL, +
 OPTCD=ASYNC LISTEN FOR CONNECTION REQUESTS
 LTR 15,15 REQUEST ACCEPTED?
 BNZ TLSTNERR IF NOT, GO TO ERROR ROUTINE
 ST 1,LISTENPL ELSE, SAVE TPL ADDRESS
 .
 . [application program can perform other processing]
 .
 L 1,LISTENPL GET LISTEN TPL ADDRESS
 TCHECK TPL=(1) WAIT FOR CONNECT INDICATION
 USING TPL,1
 L 7,TPLSEQNO LOAD SEQUENCE NUMBER
 DROP 1
 .
 . [SYNAD routine handles TLISTEN completion errors]
 .
LISTENPL DS F LISTEN TPL ADDRESS
CLIENTPA DS XL(LTPAINET) ADDRESS OF CLIENT
 TDSECT TPL,TPA,DOMAIN=INET GENERATE TPL AND TPA DSECTS

TERROR—Abnormally Completed Service Requests

When a request for service completes abnormally, information returned in the
TPL defines the particular error. There are numerous reasons a request may
complete abnormally, ranging from programming logic errors to network and
protocol malfunctions. To assist the user in processing such errors, the API
provides the TERROR function, which analyzes the error and generates an
informative message.

The parameter supplied to the TERROR function must be the address of an
inactive TPL that completed abnormally. The information contained in the TPL is
analyzed by TERROR, and an error message is generated in WTO list format.
This error message can be displayed to an interactive user or system operator or
logged for later diagnosis by a programmer.
**

* SYNCHRONOUS ERROR RECOVERY ROUTINE
**
 USING SYNADX,12
SYNADX LR 12,15 ESTABLISH BASE ADDRESS
 LR 2,0 SAVE RECOVERY ACTION CODE
 LR 3,1 SAVE TPL ADDRESS
 TERROR TPL=(1) GENERATE DIAG. ERROR MSG.
 LTR 15,15 MESSAGE RETURNED?
 BNZ SKIPWTO IF NOT, SKIP WTO
 LR 4,0 SAVE WTO LIST ADDRESS
 USING TEM,4
 WTO MF=(E,TEMWTO) WRITE MESSAGE TO OPERATOR
 L 0,TEMSL LOAD LENGTH AND SUBPOOL
 FREEMAIN RU,LV=(0),A=(4) RELEASE MSG. STORAGE AREA
 DROP 4
SKIPWTO DS OH
 .
 . [perform recovery processing]
 .
 TDSECT TEM GENERATE TEM DSECT

2–72 Assembler API Concepts

Declarative Macro Instructions

TEXEC—Executing a Fully-initialized TPL

TEXEC executes a TPL that is fully initialized, including the function code
associated with a given service request. TEXEC is typically used in an error
recovery routine to reexecute a previous request, or when the application
program wants to bypass the API macro instructions and manipulate the TPL
directly.

Note: Strictly speaking, TEXEC is not a local function, since it invokes an API
service, but it is presented here since it does not fit in any of the function groups
previously discussed. In fact, TEXEC can be used to execute any of the
previously discussed service functions and, therefore, belongs in all groups.

TSTATE—Return Endpoint State

TSTATE is the last control function. Its primary use is to get state information
associated with a given endpoint. The endpoint is identified by providing the
address of any TPL used with any service request. Since the TSTATE function
also checks to see if a TPL is inactive, and if not, whether the request is complete,
TSTATE also can be used to poll the status of a pending service function.

Declarative Macro Instructions
Declarative macro instructions are macro instructions that never generate any
executable code. They are generally used to define data areas used by other
macro instructions.

These are the declarative macro instructions supported by the API.

APCB Generates Application Program Control Block (APCB) used by

AOPEN and ACLOSE session services.

TDSECT Generates dummy control sections (DSECTs) for API user-level
control blocks.

TEVNTLST Generates list of protocol event ECBs or exits.
Referenced by TOPEN request.

TEXLST Generates exit list referenced by AOPEN and TOPEN functions.

TPL Generates a Transport Service Parameter List (TPL).

Concepts and Facilities 2–73

Declarative Macro Instructions

The APCB Macro Instruction

The APCB macro instruction generates the APCB referenced by the AOPEN,
ACLOSE, and TOPEN service functions. Any fields of the APCB that normally
may be set by the application program can be specified with the APCB macro
instruction. The list form of the macro instruction generates an APCB in-line
with the macro instruction. The APCB is modified by the AOPEN service
function and must not be in protected storage. There is no reentrant (that is,
remote list) form of the APCB macro instruction, and if the application program
is reentrant, the APCB must be moved into dynamic storage before it is opened.
An alternate form of the APCB macro instruction generates a DSECT that maps
the fields of the APCB for direct program manipulation.

The TDSECT Macro Instruction

The TDSECT macro instruction can be used to generate a DSECT for all other
user-provided data structures interpreted by the API.

The following is a list of the defined data structures.

TEM Transport Service Error Message.

TIB Transport Service Information Block.

TPA Transport Protocol Address.

TPL Transport Service Parameter List.

TPO Transport Protocol Options.

TSW Transport Endpoint State Word.

TUB Transport Endpoint User Block.

TXL Transport Endpoint Exit List.

TXP Transport Endpoint Exit Parameters.

2–74 Assembler API Concepts

Declarative Macro Instructions

The TEXLST Macro Instruction

The TEXLST macro instruction is used to define an exit list referenced by the
AOPEN or TOPEN service functions. A positional parameter defines which
service function the exit list is used with, it also defines the maximum length of
the exit list and its contents. Only a subset of the exits supported in an AOPEN
exit list can be specified in a TOPEN exit list.

Each keyword operand of the TEXLST macro instruction defines the entry point
of an exit routine that may be scheduled by the API to process certain
asynchronous events. See the TCPaccess Assembler API Macro Reference for more
information on the TEXLST macro instruction.

Here is an example of this macro instruction:
**

* DEFINE APPLICATION PROGRAM CONTROL BLOCK REFERENCING TEXLST
**
TUAPCB APCB AM=TLI,APPLID=EXAMPLE,EXLST=TUEXLST GENERATE APCB
TUEXLST TEXLST AOPEN,SYNAD=SYNADX,LERAD=LERADX SPECIFY EXIT ROUTINES

The TEVNTLST Macro Instruction

The TEVNTLST macro instruction is used to define ECBs to post for protocol
event notification. TEVNTLST supports protocol event exits as well. TEVNTLST
follows the same rule as TEXLST, except there is no TOPEN, AOPEN, APEND,
SYNAD or LERAD parameter.

Note: Unlike TEXLST, which may be referenced on TOPEN or AOPEN, only
TOPEN may reference TEVNTLST.

With TEVENTLST, each event keyword parameter takes two subparameter
values:

■ The first subparameter value is the address of the exit routine or ECB
associated with the event

■ A second subparameter is optional and is used to designate whether the first
subparameter value is the address of an exit routine (EXIT) or the address of
an ECB (ECB).

Concepts and Facilities 2–75

Declarative Macro Instructions

If the second subparameter value is omitted, the default value is EXIT.

Here is an example of this macro instruction:
**

* DEFINE TEVNTLST
**
 TOPEN DOMAIN=INET,TYPE=COTS,APCB=TUAPCB, +
 EVENTLST=TUEVLST
 .
 .
 .
TUAPCB APCB AM=TLI,APPLID=EXAMPLE
TUEVLST TEVNTLST CONNECT=(CONNX,EXIT), CONNECT INDICATION EXIT +
 DATA=(DATAECB,ECB), DATA INDICATION ECB +
 RELEASE=RELX RELEASE INDICATION EXIT

The TPL Macro Instruction

The TPL declarative macro instruction can be used to generate the TPL for any
service function other than TOPEN. The TPL macro instruction supports both the
in-line and remote list forms. The TPL can also be generated by the list forms of
the other API service functions.

Example The TPL for a TBIND request can be generated with either the TBIND or TPL
macro instructions. If generated with the TBIND macro instruction, the function
code in the TPL is initialized for the TBIND service. Otherwise, the function code
must be supplied later.

Another difference between the TPL macro instruction and function-specific
macros is that TPL supports all possible TPL parameters, whereas function-
specific macros support only the parameters valid for the specific function.

2–76 Assembler API Concepts

Endpoint States and Function Sequences

Endpoint States and Function Sequences
An address space can contain several transport users, and any given transport
user can open several endpoints. The maximum number of transport users and
endpoints is ultimately limited by API resources. It can be further restricted by
limits defined during installation or by limits imposed by a particular transport
provider. The activity on one endpoint generally is unrelated to the activity on
any other endpoint. However, for a given endpoint, API service functions must
be executed in a prescribed sequence. This sequence parallels the phases of
service previously described in this chapter.

Endpoint Functions

During the lifetime of an endpoint, the particular functions that can be executed
at any given moment are determined by:

■ The service mode of the endpoint

■ Characteristics of the transport provider

■ The current state of the endpoint

The API service functions that apply to each service mode have been discussed
in detail. The characteristics of the transport provider that apply to selected
functions have also been discussed, and whether or not a particular transport
provider possesses these characteristics can be determined at runtime by
examining the TIB. This chapter concludes with a discussion of endpoint states
and how they affect the execution sequence of API service functions.

Endpoint States

The current state of an endpoint is maintained in a data structure allocated by
the API. This data structure is located via the endpoint identifier returned by
TOPEN, and as such, all requests for service that reference the endpoint must be
accompanied by this identifier. If the wrong endpoint identifier is provided, or
has been corrupted, the request fails.

As API functions are executed, the endpoint transitions from one well-defined
state to another. In some cases, the next state is the current state, and in other
cases, it is a new state. However, at any given moment, the endpoint is in one of
nine states.

Concepts and Facilities 2–77

Endpoint States and Function Sequences

The following table defines these states and how they relate to the service modes
for which they are valid.

State
Value

 State Name Service Type Description

0 TSCLOSED COTS CLTS Closed.
The endpoint is closed (nonexistent) or in the process of
opening.

1 TSOPENED COTS CLTS Opened.
The endpoint is opened, but no local protocol address was
bound to the endpoint.

2 TSDSABLD COTS CLTS Disabled.
A local protocol address is bound to the endpoint, and the
endpoint is disabled for queuing incoming connection
requests (QLSTN=0).
If the service mode is connectionless, the endpoint is ready for
data transfer.

3 TSENABLD COTS
(CLTS,ASSOC)

Enabled.
A local protocol address was bound to the endpoint, and the
endpoint is enabled for queuing incoming connection requests
(QLSTN>0).

4 TSINCONN COTS
(CLTS,ASSOC)

Connect-indication-pending.
One or more connect indications were received that have not
been accepted or rejected.

5 TSOUCONN COTS
(CLTS,ASSOC)

Connect-in-progress.
An outgoing connection is in progress, and the endpoint is
waiting connect confirmation.

6 TSCONNCT COTS
(CLTS,ASSOC)

Connected.
A connection (or association) was established and the
endpoint is ready for data transfer.

7 TSINRLSE (COTS,ORDREL
) (CLTS,ASSOC)

Release-indication-pending.
An orderly release was received and acknowledged, and the
endpoint may continue sending data.

8 TSOURLSE (COTS,ORDREL
) (CLTS,ASSOC)

Release-in-progress.
An orderly release was initiated, and the endpoint may
continue receiving data until released by the remote transport
user.

2–78 Assembler API Concepts

Endpoint States and Function Sequences

The value of the current endpoint state can be obtained by the TSTATE control
function and is returned within a 32-bit state word containing other status
information. The structure and contents of this word is mapped by the Transport
Endpoint State Word (TSW) DSECT, which can be generated by the TDSECT
macro instruction. The state names listed in this table correspond to the symbols
defined by the TSW DSECT.

State Transitions

State transitions occur on the successful completion of an API service function. If
a function completes abnormally, the current state is not changed. The appendix
“Endpoint State Transitions” lists all possible state transitions caused by any API
service function.

The following diagrams summarize the state transitions for connection-mode
and connectionless-mode service.

Note: Due to the many variations possible, only the common transitions are
shown. Use the appendix “Endpoint State Transitions” as the final authority for
determining when a particular function can be invoked and what state
transitions occur as the result of its successful execution.

Concepts and Facilities 2–79

Endpoint States and Function Sequences

Connect-Mode
States

This diagram shows the state transitions for connection-mode service. The left
side of the diagram represents the client path and the right side represents the
server.

States Transitions for Connection-Mode Services

CONNECTED

CLOSED

OPENED

RELEASE
IN

PROGRESS

RELEASE
INDICATION

PENDING

CONNECT
IN

PROGRESS

CONNECT
INDICATION

PENDING

DISABLED ENABLED

TC
LO

S
E

TD
IS

C
O

N
N

 o
r T

CL
EA

R

TC
O

NN
EC

T

TCLOSE

TC
L O

SE

TC
LO

SE
TO

PEN

TCLOSE

TC
LO

S
E

TC
L O

S E

TC
LO

SE

TRELEASE

TRELACK

TRECV TSEND

TBIND (qlstn>0)

TBIND (qlstn=0) TBIND (qlstn>0)

TR
ELA CK

(qlstn=0)

TUNBIND TUNBIND

TRETRACT

TD
ISC

O
NN

(qlst n=0)

 or TC
LEAR

TCONFIRM

TRECV TSEND

TACCEPT

(qlstn>0)

TD
IS

CO
NN

or
 T

C L
EA

R
(q

ls
t n

>0
)

TL
IS

TE
N

TR
E

JE
C

T

TR
EL

EA
SE

 o
r T

C
LE

A
R

PATH OF A CLIENT PATH OF A SERVER

(q
lst

n>
0)

TRELEASE (qlstn>0)

■ An endpoint initially exists in the closed state and transits to the opened
state when opened by the TOPEN service. The client can then bind a
protocol address by executing a TBIND request.

■ A client should leave the endpoint disabled for receiving connect indications
by specifying a QLSTN value of zero. This causes the endpoint to enter the
disabled state.

■ A server should specify a QLSTN value greater than zero when the protocol
address is bound, and the endpoint transits to the enabled state. A
TUNBIND function executed in the enabled or disabled state causes the
endpoint to reenter the opened state.

2–80 Assembler API Concepts

Endpoint States and Function Sequences

■ An endpoint can enter the enabled state from the disabled state; this state
transition is not shown in the interest of keeping the diagram less cluttered.
At this point, the client can initiate a connection to the server, and the server
can receive connect indications from clients.

■ A TCONNECT request successfully executed by the client causes the
endpoint to enter the connect-in-progress state. The server receives the
connect indication via a TLISTEN function, which transits the endpoint to
the connect-indication-pending state.

■ If the connect indication is accepted (TACCEPT), then the endpoint enters
the connected state.

■ If the connect indication is rejected (TREJECT), then the endpoint returns to
the enabled state.

■ Subsequent arrival of the connect confirmation causes a TCONFIRM request
to complete, leaving the endpoint in the connected state. A disconnect
indication received by TCLEAR, or a disconnect initiated by TDISCONN,
causes the endpoint to return to the disabled state.

■ An endpoint in the connected state is ready for data transfer and loses its
distinction with respect to client or server modes of operation. TSEND and
TRECV requests may be executed indefinitely, each leaving the endpoint in
its connected state.

■ When data transfer is complete, either the client or server can initiate
connection release. The transport user initiating release does so by executing
the TRELEASE function, causing the endpoint to enter the release-in-
progress state. While in this state, the endpoint can continue receiving data.

■ When the peer transport user receives a release indication, it must
acknowledge receipt by invoking the TRELACK service function. Successful
completion of this request transits the endpoint to the release-indication-
pending state, and the endpoint is able to continue sending data.

■ When the complementary TRELEASE or TRELACK functions have been
executed, completing release of the connection, the respective endpoints
return to their original state prior to establishment of the connection.

■ This state transition diagram also shows that a connection can be released
abruptly by issuing a TDISCONN request or by receiving a disconnect
indication via the TCLEAR function. In either case, the endpoint returns to
the state it was in after the protocol address was bound. In addition,
TCLOSE can be issued at any time, returning the endpoint to the closed
state.

Concepts and Facilities 2–81

Endpoint States and Function Sequences

Connectionless-Mode
States

This diagram shows the state transitions for connectionless-mode service.

State Transitions for Connectionless-mode Services

DISABLED

CLOSED

OPENED

TO
PE

N

T C
LO

SE
TUNBIND TB

IN
D

TRECVFR TSENDTO

TC
LO

SE

This state diagram reflects the simplicity of connectionless-mode service, which
uses only closed, opened, and disabled states.

All data transfer takes place in the disabled state. O

■ On completion of data transfer, the endpoint can be closed—returning it to
the closed state

■ The local protocol address can be unbound—returning the endpoint to the
opened state

Establishing an association with a CLTS endpoint has similar state transitions to
connection-mode.

2–82 Assembler API Concepts

Endpoint States and Function Sequences

Function Sequences

Issuing a request when the endpoint is not in a proper state causes the request to
complete with an error. In addition, issuing a request for service when a
previous request, issued on the same endpoint, has not completed, generally
causes an error. However, there are some important exceptions that let some
functions overlap or be preempted by subsequent requests.

This is a brief list of these exceptions:

■ Multiple TSEND, TSENDTO, TRECV, and TRECVFR requests can be issued
subject to the limits defined in the TIB or negotiated with a TOPTION
request

■ One TRELEASE request can be issued while one or more TSENDs are
pending, and one TRELACK request can be issued while one or more
TRECVs are pending

■ TRETRACT can (and should be) issued while a TLISTEN request is pending

■ One TDISCONN or TCLEAR request can be issued at any time except when
a TCLOSE request is pending

■ One TCLOSE request can be issued at any time

Regardless of the function requested, a TPL must not be reused until the
previous request with which it is associated completes. If multiple requests are
pending at any point in time, each must be associated with a different TPL.
Techniques that can be used to synchronize with the completion of a request are
presented in the chapter “Program Synchronization and Control.”

Under rare circumstances, the API may not be able to accept a request for service
because of a temporary resource shortage, even if all function sequencing rules
are obeyed. Should this happen, the request completes with an error indicating
the resource shortage and should be reissued after some delay. However, it is
much more likely that the transport provider will exhaust its resources before the
API does.

Concepts and Facilities 2–83

Chapter

3
Program Synchronization and
Control

This chapter discusses how the application program synchronizes with the
transport provider and controls the execution sequence of Unicenter TCPaccess
API macro instructions. The information presented in this chapter together with
the concepts and facilities presented in the preceding chapter provide the
necessary background for understanding how the macro instructions operate.
For detailed information about each API macro instruction, refer to the Unicenter
TCPaccess Communications Server Assembler API Macro Reference.

This chapter discusses the following topics:

■ Task Synchronization Requirements—Describes how to synchronize with
the completion of a TPL-based service request and overlap endpoint
processing with other application program activities

■ Modes of Operation—Describes the various modes of operation for TPL-
based service requests and provides detailed information on synchronization
characteristics of the API macro instructions

■ Specifying and Using Exit Routines—Describes how to specify, code, and
use exit routines for processing various asynchronous events

■ Handling Errors and Special Conditions—Describes how to detect and
handle errors and other special conditions

■ Application Program Organization—Describes facilities for program control
and synchronization

■ Multitasking Operation Rules—Describes the rules for using the API in a
multitasking environment

■ Multiple Address Spaces—Describes the facility provided to pass sessions
from one address space to another

■ 24-Bit and 31-Bit Addressing—Describes use of the API with 24-bit and 31-
bit addressing

Program Synchronization and Control 3–1

Task Synchronization Requirements

Task Synchronization Requirements
The API must be capable of providing service within a variety of application
program environments; single-threaded programs serving a single user must be
supported as well as multithreaded programs supporting several users
simultaneously.

In the latter case, such programs may be:

■ Multi-task or multi-address-space

■ Single task with a built-in scheduling algorithm for servicing individual user
requests (for example, CICS)

In addition, the API must support the capability of overlapping network I/O
with other application program processing (for example, disk I/O).

An important characteristic of the API design is, at the option of the application
program, no transport service request causes the issuing task to be suspended.
As a result, the processing of service requests can be easily overlapped with
other application program activities, and when executing on a multi-processor,
can actually be executed in parallel. To support this requirement, the API
provides a mechanism for initiating a service request and synchronizing with its
subsequent completion under total control of the application program.

The synchronization mechanisms implemented by the API are similar to those of
VTAM, and use standard MVS facilities. Thus, a programmer who is familiar
with VTAM assembler language programming has already been introduced to
most of the principles presented in this section. However, it is suggested that
such programmers read this section as a review.

Typical Processing Flow

A service request requires processing in two MVS address spaces. The Transport
User Address Space (TUAS) is the address space of the application program that
initiates the request. The Transport Provider Address Space (TPAS) is the
address space containing the API subsystem and the transport service provider
that eventually processes the request. In some cases, the transport provider may
reside in an external device (for example, a specialized network I/O processor),
and the transport provider depicted in the following diagram is merely a stub
that communicates with the external device. In either case, all other entities are
present, and the actual location of the transport provider is transparent to the
application program.

3–2 Assembler API Concepts

Task Synchronization Requirements

Execution Flow The following diasgram shows the typical processing flow for a transport
service

APPLICATION PGM.
.
.
TPL-based macro
instruction
.
.
.

TPL

DATA

DATATPL

LINKAGE MODULE

Locate and call TLI PC routine
Invoke error recovery routine if

appropriate
Return to Application Program

BALR

TPAS FUNCTION PROCESSORS
Set TPL active
Validity check TPL
Copy TPL and data to TPAS
Determine if the requested

function can be performed at
this time. If not:
suspend the task, or
set up a callback point here

and return to caller
Perform requested function

processing
Update endpoint state and

control variables
Copy TPL and data updates

back to the TUAS
Mark TPL complete

Transport User Address Space (TUAS)
Transport Provider Address Space (TPAS)

T.requestT.response

TRANSPORT SERVICE PROVIDER

Performs all necessary protocol
processing, including
constructing, sending,
receiving, and interpreting
transport protocol data units

Issues T.indication and
T.confirm primitives and
processes T.request and
T.response primitives.
T.indication and T.confirm
primitives will either:
resume the suspended task,

T.indication
T.confirm

PC

CALL-BACK SRB

Invoke TLI PC routine
to re-enter the TPAS
function.

Return to system

Dispatched
Asynchronously

PC

Program Synchronization and Control 3–3

Task Synchronization Requirements

Service Request
Initiation

All service requests are initiated by executing an API macro instruction.

This list describes the steps included in this process:

■ The API macro expansion generates executable instructions that call a TUAS
function interface that was loaded into common storage.

■ The TUAS function interface locates the PC number for the TPAS interface
and issues the PC instruction. The TPAS PC routine is a space-switched PC.
The TPAS becomes the primary address space, although execution continues
under control of the application program dispatchable unit.

■ The TPAS PC routine locates and calls a TLI function-dependent processing
routine (TPAS function processor).

■ The TPAS function processor validates the request parameters and copies
the TPL and associated data into the API address space.

■ The TPAS function processor calls the respective transport provider routines
(that is, connection management and data transfer routines).

■ Depending upon the specific API request or the existing conditions of the
endpoint at the time, the request can either complete immediately, or it may
need to wait for a protocol event such as the arrival of data or a connect
request.

■ When a protocol event must occur before completing the request, either the
application’s dispatchable unit is suspended or the request is queued
internally and control is returned to the application program. The requested
mode of service (synchronous or asynchronous) determines the disposition
of the event-pending request.

 When the anticipated protocol event occurs, suspended synchronous
requests are resumed. An SRB routine is scheduled into the application
address space to redrive the internally queued request via the TPAS PC
interface.

 During the time that an asynchronous request is queued awaiting a protocol
event, the application program may perform additional processing.
Eventually, the application must issue a TCHECK to resynchronize with the
request.

■ The TPL and associated data areas in the application address space are
updated.

■ The application is notified of the completed request. For synchronous
requests, this simply consists of returning control to the application. For
asynchronous requests, completion processing depends if the request
specified ECB or EXIT for completion notification.

■ If ECB was specified, a cross-memory post is executed.

3–4 Assembler API Concepts

Modes of Operation

■ If EXIT was specified, the exit routine address and parameter are placed into
a queue element for processing by the TUAS IRB routine. The IRB routine
must also be scheduled if it is not already active. Synchronization modes are
discussed in Modes of Operation.

Modes of Operation
The mode of operation affects how processing proceeds after a service request is
accepted and scheduled for processing by the API address space. The mode of
operation is selected individually for each request by indicating an option code
when the macro instruction is executed.

This section describes the various modes of operation for TPL-based service
requests and provides detailed information on synchronization characteristics of
API macro instructions.

Example OPTCD=SYNC indicates synchronous operation, and causes the request to
complete before control is returned to the application program.

OPTCD=ASYNC indicates asynchronous operation, and causes control to be
returned prior to completion if the request must await a protocol event.

Processing that precedes acceptance of a service request, and all processing
within the API address space, is identical for both modes of operation. When a
service request is issued, the TPL is set active and its contents are checked for
validity. If the request is valid and the state of the endpoint is acceptable, the
request is scheduled for processing by the API address space. When the request
completes, the TPL is posted complete. The TPL remains active during this entire
period, and if a subsequent request attempts to use the TPL, it completes
immediately with an error.

Program Synchronization and Control 3–5

Modes of Operation

Operating Mode Differences

The difference between operating modes arise after the request is issued and
only affects processing in the application program’s address space.

■ For synchronous mode, the TPAS function interface waits for the request to
complete, and sets the TPL inactive before returning to the application
program.

■ For asynchronous mode, the TPL is left in its active state when control is
returned. It is the responsibility of the application program to wait for
completion and cause the TPL to be set inactive by executing a TCHECK
macro instruction.

Execution of the TCHECK macro instruction is implicit in synchronous mode,
and explicit in asynchronous mode.

The following table lists each mode of operation. Operation modes are
discussed in further detail in the examples.

Synchronization
Characteristics of
Macro Instructions

Synchronous Operation

Macro Instruction Transport Provider Primitive
Required For Completion

Notes

ACLOSE 1

AOPEN

APCB

TACCEPT T-CONNECT.response 2

TADDR

TBIND

 3

TCLEAR

TCLOSE 4

TCONFIRM T-CONNECT.confirm

TCONNECT T-CONNECT.request

TDISCONN T-DISCONNECT.request

TDSECT

TERROR

TEXEC Dependent on function code

TEXLST

TCHECK

3–6 Assembler API Concepts

Modes of Operation

Macro Instruction Transport Provider Primitive
Required For Completion

Notes

TINFO

TLISTEN T-CONNECT.indication

TOPEN

TOPTION

TPL

TRECV T-DATA.indication or
T-EXPEDITED-DATA.indication

TRECVERR

TRECVFR T-UNITDATA.indication

TREJECT T-DISCONNECT.request

TRELACK T-RELEASE.indication

TRELEASE T-RELEASE.request

TRETRACT

TSEND T-DATA.request or
T-EXPEDITED-DATA.request

2

TSENDTO T-UNITDATA.request

TSTATE

TUNBIND

TUSER

Note: These notes correspond to the note numbers in the table:

1. The API issues a synchronous TCLOSE for all opened endpoints.

2. Primitive issued to a TCP-based provider may delay completion until an
acknowledgment is received from the remote transport provider.

3. The API may issue a system WAIT macro instruction if pending request has
not been completed.

4. The API issues T-DISCONNECT.request primitive if connection has not been
released.

Program Synchronization and Control 3–7

Modes of Operation

Synchronous Operation

In a synchronous program, operations are performed serially. A request for
synchronous operation (OPTCD=SYNC) means that the API does not return
control to the next sequential instruction in the application program task from
which the macro instruction was issued until after the requested operation
completes. Execution of the application program task is suspended by issuing a
system WAIT macro instruction until the API completes the request. The
program must wait for the processing of one requested operation to complete
before going on to the next.

Synchronous
Operation Flow

The following diagram shows the flow of a synchronous operation.

TRANSPORT USER ADDRESS SPACE TRANSPORT PROVIDER ADDRESS SPACE

- TPL-based macro instruction
(OPTCD=SYNC)

BALR to TU interface
- Locate TLI PC number

•
•
•

- Validity check TPL
PC

PR

BR

- Code should test register 15

•
•

to determine if request was
successful

- Copy TPL and data

- Mark TPL complete
- Update TPL and data
- Set TPL inactive

- Perform the requested protocol
action. Requester may be
suspended to await
protocol event.

•
•
•

in CSA

Asynchronous
Protocol Event

Resume

Synchronous Return

- If error, drive SYNAD
or LERAD exit

•
•

3–8 Assembler API Concepts

Modes of Operation

When control is returned to the next sequential instruction in the application
program task, the TPL is set inactive, and may be reused for another request.
Synchronous mode is appropriate for application programs that manage a single
endpoint and do not need to overlap endpoint operations, such as send and
receive operations, with other application program activities. This suggests that
the communication of data via the endpoint is half-duplex in nature, and that
some arrangement exists between the communicating entities to know when to
send and receive data. Since only one operation may be pending at any point in
time, synchronous operation is usually less complex than asynchronous
operation.

While the application program is waiting for the request to complete, an
asynchronous event such as a timer interrupt could cause the program’s STIMER
exit routine to be entered. Similarly, asynchronous API events could cause the
corresponding exit routines to be entered (see the discussion of exit routines in
Specifying and Using Exit Routines . Only the application program task from
which the macro instruction was issued is suspended while waiting for
completion of a synchronous operation. The exit routines associated with the
program are scheduled and executed whether or not the mainline program logic
is awaiting completion of a synchronous operation. However, if a synchronous
operation is issued from within an exit routine, executions of other exit routines
may be prevented until the operation completes.

When a synchronous operation completes, the application program must
determine whether the operation was successful or unsuccessful. The program
does this by testing values in registers 15 and zero and by examining fields in the
TPL used for the operation. For more information on error handling, refer to
Handling Errors and Special Conditions .

Asynchronous Operation

In an asynchronous operation, control of execution may return to the application
program’s next sequential instruction before the requested operation completes.
The transport provider may not be able to complete an operation immediately if
dependent upon some event, such as the arrival of data or a protocol indication,
or if it is necessary to serialize the request with other API requests for a given
endpoint. In these situations, the transport provider analyzes request for errors
and saves the request to await the respective event before returning to the
application program. At this point, the program may issue other API requests or
perform other application specific activities.

Example An application program can issue a TRECV macro instruction on one endpoint
indicating asynchronous mode, and while the input operation is being
performed, the application program can:

■ Send some data on the same endpoint

■ Initiate an operation on a different endpoint

Program Synchronization and Control 3–9

Modes of Operation

■ Perform other I/O activities, such as reading or writing a direct-access
storage device

The application program can determine if the request was accepted by testing
the value returned in register 15. If the value is zero, the request was accepted
and the associated TPL is set active. If the value is non-zero, the request was not
accepted, and register 15 and zero contain the same information as if the request
was executed in synchronous mode. In this case, the TPL sets inactive, and the
application program should initiate error recovery without waiting for the
request to complete.

While an asynchronous operation is pending, the associated TPL is active and
cannot be used with another request until it is posted complete. If the application
program issues another TPL-based macro instruction, a different TPL must be
used. In addition, when an operation is pending for an endpoint, other
operations that can be initiated at the same endpoint are limited.

When an asynchronous operation is specified, there are two ways the API can
notify the application program that the requested operation has completed:

■ If the application program associates an Event Control Block (ECB) with the
request, the API posts the ECB when the operation completes.

■ Alternatively, the application program can designate that a particular TPL
exit routine be executed as soon as the operation completes.

When the operation completes, the API schedules the exit routine.

The method of notification is controlled by storing the address of the ECB or exit
routine in the TPL used for the request.

Regardless of whether a program waits on an ECB or uses a TPL exit routine, a
TCHECK macro instruction must be executed after an asynchronous operation
completes to set the TPL inactive and to make it available for another request.
The TCHECK macro instruction also clears the ECB if one was provided.

It is also important to note that the TPL ECB may be posted or the TPL exit
routine may be executed before the application receives control back from the
API (for example, at the next sequential instruction following the TLI request
macro). This is because this activity occurs upon a different unit of execution
within the operating system.

3–10 Assembler API Concepts

Modes of Operation

Asynchronous Operation Using ECBs

By using ECBs, the application program can issue one WAIT macro instruction
for a combination of pending API requests in addition to non-API requests that
also use ECBs.

Example 1 An application program can issue three TRECV requests for three different
endpoints and three BSAM WRITE requests for three different data sets. By
issuing one WAIT for all six ECBs, the application program resumes processing
when any one of the six operations completes. When execution resumes, the
application program can determine which operation completed by determining
which ECBs are posted.

The distinction between ECBs and TPL exit routines is primarily that the TPL
exit routine is automatically scheduled when the requested operation completes,
thereby saving the application program the trouble of testing ECBs and
branching to subroutines. On the other hand, the use of ECBs provides the
program with greater control over the order in which events are to be handled.

Example 2 The application program can prioritize requested operations by testing some
ECBs before others. The order of testing can be varied during program execution
as circumstances change.

If neither an ECB address nor a TPL exit routine address is specified by the TPL-
based macro instruction, the API uses the ECB-EXIT field of the TPL
(TPLECBXR) as an internal ECB, and the API (for synchronous operations) or the
application program (for asynchronous operations) waits on it, checks and clears
it. Alternatively, the ECB-EXIT field can be set to point to an external ECB
provided by the application program by using a TPL-based macro instruction
that specifies ECB=ecb address. Once set, it can be reset to an internal ECB by
specifying ECB=INTERNAL. If OPTCD=SYNC is specified, ECB=INTERNAL is
assumed.

Asynchronous
Operation Using
Internal ECB

 When using an internal ECB, the application program does not wait or check
the internal ECB, and lets the TCHECK function wait if necessary. The
application program could have waited on the ECB explicitly knowing that it is
located in the TPL location at TPLIECB (TPLECBXR).

The diagram, Asynchronous Operation Using External ECB, shows this
processing flow.

Program Synchronization and Control 3–11

Modes of Operation

- TPL-based macro instruction
(OPTCD=ASYNC, ECB=INTERNAL)

BALR
- Locate TLI PC number

•
•

- Validity check TPL
PC

PR

- Copy TPL and data

- Process the request
- Update TPL and data
- Mark TPL complete

- Determine if request must
await a protocol event. If so,
set up for asynchronous call
back and return to caller.

•
•
•

- Protocol Event
occurs

Synchronous return

to TU interface in CSA

- Schedule call
back SRB

- Post TPLIECB

PR
Asynchronous return

SRB

- Initiate
call back

PRBR
Asynchronous return
via Synchronous or

•
•
•

TRANSPORT USER ADDRESS SPACE TRANSPORT PROVIDER ADDRESS SPACE

- Code should test register
15 to determine if request
was accepted.

- Application program can
perform other work while

BR•
•
- Code should test register 15 to

determine if request was successful

- TCHECK MF=(E,tpladdr)

BALR

PC

- Wait ECB=ecbaddr
- Set TPL inactive

•
• PR

TPL is being processed

Application program is
suspended while transport
provider processes request

3–12 Assembler API Concepts

Modes of Operation

Asynchronous
Operation Using
External ECB

When using an external ECB, the application program issues a WAIT for the
external ECB, but could have allowed TCHECK to perform the wait implicitly.
This diagram shows this processing flow.

- TPL-based macro instruction
(OPTCD=ASYNC, ECB=ecbaddr)

BALR
- Locate TLI PC number

••

- Validity check TPL
PC

PR

- Copy TPL and data

- Process the request
- Update TPL and data
- Mark TPL complete

- Determine if request must
await a protocol event. If so,
set up for asynchronous call
back and return to caller.

•
•
•

- Protocol Event
occurs

Synchronous return

to TU interface in CSA

- Schedule call
back SRB

- Post ecbaddr

PR
Asynchronous return

SRB

- Initiate
call back

PRBR
Asynchronous return
via Synchronous or

•
•
•

TRANSPORT USER ADDRESS SPACE TRANSPORT PROVIDER ADDRESS SPACE

- Code should test register
15 to determine if request
was accepted.

- Application program can
perform other work while

BR•
•
- Code should test register 15 to
determine if request was successful

- TCHECK MF=(E,tpladdr)

BALR
•
•

TPL is being processed

Application program is
suspended while transport
provider processes request

- WAITECB=ecbaddr (optionally,
TCHECK will issue WAIT)

- Set TPL inactive

Program Synchronization and Control 3–13

Modes of Operation

Asynchronous
Operation Using
Completion Exits

Instead of having the API post an ECB when a request for an asynchronous
operation completes, the application program can have the API schedule and
cause control to be given to a TPL-specified asynchronous exit routine. The TPL
exit routine can supply the logic that would have been branched to by the
mainline program after discovering a posted ECB. A TPL exit routine is any
exit routine whose symbolic name was provided in the EXIT operand of the
macro instruction or the TPL used for the request.

One advantage of using a TPL exit routine instead of an ECB is that it is easier to
code for this type of processing than it is to code the logic associated with
discovering a posted ECB and relating the ECB to a branch address. Also, the
TPL exit routine is given control almost immediately after the associated TPL-
based operation completes, and thus has priority over the mainline program. A
disadvantage of a TPL exit routine is that more system instructions must be
executed to schedule an exit routine than must be executed to post an ECB. Also,
as discussed in the previous section, TPL-exit scheduling does not provide as
much flexibility as ECB-posting for giving a higher priority to selected
operations. An application program can use a combination of ECB-posting and
TPL exit routines (see Mixing Synchronization Modes on mixing modes of
operation).

A TPL exit routine can itself issue asynchronous requests, continue executing,
and return to the API. The asynchronous request in a TPL exit routine can
specify that on completion of the request, an ECB be posted or a TPL exit routine
be scheduled. If the TPL exit routine option is chosen, the exit routine can be the
same one in which the request was issued, or different.

A TPL exit routine can also issue synchronous requests, but the exit routine is
suspended until the synchronous operation completes. Since the API schedules
exit routines serially for a given task, a synchronous request issued in an exit
routine also prevents other exit routines from receiving control until control is
returned from the suspended exit routine. The TPL exit routine may have run, or
the TPL completion ECB may have been posted prior to the return from the
asynchronous request.

The following diagram, Asynchronous Operation Using Completion Exits,
shows this processing flow.

3–14 Assembler API Concepts

Modes of Operation

Asynchronous Operation Using Completion Exits

- TPL-based macro instruction
(OPTCD=ASYNC, EXIT=exitaddr)

BALR
- Locate TLI PC number

•
•
•

- Validity check TPL
PC

PR

- Code should test register
15 to determine if request
was accepted.

- Copy TPL and data

- Process the request
- Update TPL and data
- Mark TPL complete

- Determine if request must
await a protocol event. If so,
set up for asynchronous call
back and return to caller.

•
•
•

- Protocol Event
occurs

Synchronous return

to TU interface in CSA

- Schedule call
back SRB

- Activate exitaddr via IRB

PR
Asynchronous return

SRB

- Initiate
call back

PRBR
Asynchronous return
via Synchronous or

•
•
•

- Application program can
perform other work while
TPL is being processed

•
• Begin IRB (EP=T01PTIRB)

SYNCH

IRB INTERRUPT

L 15, exitaddr

- Begin exit routine (EP=exitaddr)
- TCHECK MF=(EP,tpaddr)

BALR

BR

End exit routine

BR
- End IRB

IRB EXIT
- Resume application program

PC
- Set TPL inactive

PR

- Code should test register
15 to determine if request
was accepted.

- Exit routine can issue another
TPL-based macro instruction

TRANSPORT USER ADDRESS SPACE TRANSPORT PROVIDER ADDRESS SPACE

Program Synchronization and Control 3–15

Modes of Operation

Asynchronous Operation Using Authorized Completion Exits

- TPL-based macro instruction
(OPTCD=ASYNC, EXIT=exitaddr)

BALR
- Locate TLI PC number

•
•
•

- Validity check TPL
PC

PR

- Copy TPL and data

- Process the request
- Update TPL and data
- Mark TPL complete

- Determine if request must
await a protocol event. If so,
set up for asynchronous call
back and return to caller.

•
•
•

- Protocol Event
occurs

Synchronous return

to TU interface in CSA

- Schedule call
back SRB

- Schedule fast-path SRB routine

PR
Asynchronous return

SRB

- Initiate
call back

PRBR
Asynchronous return
via Synchronous or

•
•
•

OPTCD=AUTHEXIT was
specified on the APCB

TRANSPORT USER ADDRESS SPACE TRANSPORT PROVIDER ADDRESS SPACE

- Code should test register
15 to determine if request
was accepted.

- Application program can
perform other work while
TPL is being processed

•
• Begin SRB (EP=T01RTFPX)

BASSM 14,15

Fast-path SRB

L 15, exitaddr

- Begin exit routine (EP=exitaddr)
- TCHECK MF=(EP,tpladdr)

BALR

BR

End exit routine

BR
- End SRB

SRB EXIT
- Resume application program

PC
- Set TPL inactive

PR

- Code should test register
15 to determine if request
was accepted.

- Exit routine can issue another
TPL-based macro instruction

execution

3–16 Assembler API Concepts

Modes of Operation

Using the TCHECK
Macro Instruction

When an asynchronous request is accepted by the API, control is returned to
the next sequential instruction of the application program with the TPL marked
as active. No other request can be issued with an active TPL until the operation
completes and the TPL is marked inactive.

A TCHECK macro instruction must be executed to set the TPL inactive. If ECB-
posting was specified for a request, the application program generally waits for
the ECB to post and then issues the TCHECK macro instruction. However, if a
TCHECK macro instruction executes before the ECB is posted, the API waits for
the ECB to post. In either case, the ECB is cleared by the API before returning to
the application program.

When a TPL exit routine is specified, the TCHECK macro instruction is usually
executed by the exit routine. However, the TCHECK macro instruction can be
executed by the mainline program after the exit routine has run, but this may be
difficult to coordinate. If the TCHECK macro instruction executes before the
operation completes (and EXIT is specified), an error is generated.

The TCHECK macro instruction also causes error recovery exits to be entered.
This is covered in more detail in Handling Errors and Special Conditions .

Mixing Synchronization Modes

Since the synchronization mode used for a request is determined at the time the
request is issued, the modes of operation previously described may be mixed.
That is, an application program can issue some requests in synchronous mode,
and issue others in asynchronous mode. Similarly, some asynchronous requests
can specify ECB-posting, and others can specify TPL exit routines.

The important point to remember is that once a synchronous request is issued,
the operation must complete before another request can be issued from the same
program thread. If the program thread is the mainline program, exit routines can
still run and requests can be issued from those exit routines. However, if a
synchronous request is issued by an exit routine, no other API-scheduled exit
routines run until the synchronous operation is complete. This fact can be used
to the advantage or detriment of the application program.

Program Synchronization and Control 3–17

Specifying and Using Exit Routines

Specifying and Using Exit Routines
The API lets an application program use exit routines to gain control to handle
certain events. An exit routine is written to handle a specific event, such as, a
SYNAD routine is written to process TPL-based errors or special conditions
other than program logic errors). When the event occurs, the API gives the exit
routine control as soon as possible.

This section discusses:

■ How exit routines are specified

■ How they are called by the API

■ Describes procedures to follow in using them

An overview of the API exit routines is presented, and then each exit routine is
described in detail.

How Exit Routines Are Specified

The API provides for the use of two general kinds of exit routines by an
application program:

■ TPL request completion exit routines

■ TEXLST or TEVNTLST protocol event exit routines

These two types of exit routines work somewhat differently and derive their
names from how they are specified.

TPL Exit Routines

The instructions to execute when a TPL-based service request completes can be
written as a separate routine. This routine, called a TPL exit routine, can be
specified in the TPL-based macro instruction used to initiate the request.

The address of the exit routine is specified by the EXIT operand of the macro
instruction or is stored in the TPLEXIT field of the TPL. When the requested
operation completes, the API schedules and eventually causes entry to the TPL
exit routine. The same TPL exit routine can be designated by more than one TPL-
based macro instruction. That is, a TPL exit routine can be established as a
common exit routine.

3–18 Assembler API Concepts

Specifying and Using Exit Routines

TEXLST and TEVNTLST Exit Routines

TEXLST and TEVNTLST exit routines differ from TPL exit routines in being
special-purpose. That is TEXLST/TEVNTLST exit routines handle special events
that are well understood by both the application program and the API. Instead of
being specified in a particular TPL-based macro instruction request, the identity
of a TEXLST/TEVNTLST exit routine is established only when the exit list in
which its name is specified is identified to the API, either when the application
program session is established with the API or, for certain types of exit routines,
when an endpoint is opened. In other words, TPL exit routines are associated
with a particular service request, and TEXLST/TEVNTLST exit routines are
associated with a transport user or a particular endpoint.

The TEXLST macro instruction is used to build an exit list, and the exit list is
associated with the transport user by linking it to the APCB specified in the
AOPEN macro instruction. For those exits that can be associated with a
particular endpoint, the exit list must be specified in the TOPEN macro
instruction. The TEXLST macro instruction keyword used to specify the exit
routine’s address is used in the remainder of this section when discussing
particular types of exit routines.

Example The exit routine specified by the TPEND keyword is referred to as the TPEND
exit routine.

Note: The TEVNTLST macro instruction provides capabilities similar to
TEXLST. TEVNTLST, however, can only be used with the TOPEN macro
instruction. TEVNTLST may not be referenced by an APCB macro instruction.

Internally, the TEVNTLST macro generates a parameter list that is identical to
the parameter list generated by TEXLST. TEVNTLST provides the additional
capability of specifying ECB addresses in lieu of exit routines. Both ECB
addresses and exit routine addresses can be used in a TEVNTLST specification,
but for a given event, only one ECB or exit address can be specified.

When specifying TEXLST exit routines, the content and length of an exit list is
dependent on whether the exit list is used with an AOPEN or TOPEN macro
instruction, and must be indicated with the TEXLST macro instruction. An
AOPEN exit list cannot be used with TOPEN, and vice versa.

The AOPEN and TOPEN event lists are hierarchical. When a particular endpoint
event occurs that is handled by the application program, the TOPEN event list
associated with the endpoint is accessed first. If no exit routine or ECB address
was specified in the TOPEN event list, then the AOPEN exit list is used. Only
certain types of exit routines can be specified in a TOPEN event list. However, all
types can be specified in an AOPEN exit list. Thus, the AOPEN exit list can be
used to provide default exit routines for the application program in general, and
the TOPEN exit list can provide special exit routines and ECBs for particular
endpoints if and when the need arises.

Program Synchronization and Control 3–19

Specifying and Using Exit Routines

How Exit Routines Are Called

Exit routines are classified as synchronous or asynchronous exit routines
according to how they are called by the API. The SYNAD and LERAD exit
routines are synchronous, and all other exit routines are asynchronous. Exit
routines have different characteristics based on their classification. This
classification should not be confused with similar terminology used to describe
modes of operation for service requests.

Synchronous Exit Routines

Synchronous exit routines are sometimes referred to as inline exit routines and
are considered to be an extension of the part of the application program (either
mainline or asynchronous exit routine) that was executing when the
synchronous exit routine was invoked. Effectively a synchronous exit routine is a
branch entered from a TPL-based or TCHECK macro instruction just before
control is returned to the next sequential instruction in the application program.

After a synchronous exit routine completes processing, it can return to the API. If
it is coded to return, the application program receives control at the next
sequential instruction immediately after the TPL-based or TCHECK macro
instruction that caused the synchronous exit routine to be invoked. If the exit
routine is coded not to return, it is as if the application program branched to
another location after issuing the TPL-based or TCHECK macro instruction.

Register Information When a synchronous exit routine is entered, the general-purpose registers
contain the following information:
R0 Recovery action code.

R1 Address of TPL.

R2-12 Unmodified application program registers.

R13 Unmodified application program save area address.

R14 API return address.

R15 Address of exit routine.

3–20 Assembler API Concepts

Specifying and Using Exit Routines

Synchronous Exit
Routine Coding
Procedures

These procedures should be followed when coding a synchronous exit routine:

■ The exit routine is not obligated to return to the API. However, if it does,
register 14 should be saved and restored before returning.

■ The exit routine is not required to save and restore general-purpose registers
2-12, and the API does not provide a save area for the exit routine. However,
register 13 does contain the address of an 18-word save area supplied by the
application program.

■ If the exit routine issues any TPL-based macro instructions or calls any
external routines, it must provide the address of its own 18-word save area
in register 13. Register 13 should be restored before returning to the API.

■ If the exit routine returns to the API, it should not execute any macro
instruction or call any routine that would change the contents of the 18-word
save area supplied by the application program. The API restores the
application program’s registers from the save area before returning to the
next sequential instruction.

■ Registers zero and 15 are not restored by the API and the exit routine is not
required to preserve them. Contents of these registers are passed to the
application program if the exit routine returns to the API.

A synchronous exit routine is generally not required to be reentrant. However, if
a synchronous exit routine executes other TPL-based macro instructions, the exit
routine can be reentered (recursion). In addition, if TPL-based service requests
are issued from the mainline program and asynchronous exit routines, or the
synchronous exit routine is shared by two or more programs, it can be reentered.
In this case, the application program should be prepared to handle reentrancy
issues (for example, dynamic allocation of work areas).

Program Synchronization and Control 3–21

Specifying and Using Exit Routines

Here is an example of a synchronous exit routine that returns to the API. An 18-
word save area is provided since it may issue other service requests or call
external routines:
**

* SYNCHRONOUS ERROR RECOVERY ROUTINE
**
 USING SYNADX,12
SYNADX LR 12,15 ESTABLISH BASE ADDRESS
 LR 2,0 SAVE RECOVERY ACTION CODE
 LTR 3,1 TEST TPL ADDRESS
 BNP RECURSIV IGNORE IF CALLED RECURSIVELY
 LR 5,14 OTHERWISE, SAVE RETURN ADDRESS
 O 3,=X'80000000' SET RECURSION FLAG
 ST 13,SYNADSAV+4 BACK CHAIN SAVE AREAS
 LA 13,SYNADSAV ESTABLISH NEW SAVE AREA
 .
 . [this exit routine is not intended to be reentrant]
 .
 TERROR VERBATIM,MF=(E,(3)) GENERATE DIAGNOSTIC MESSAGE
 LTR 15,15 MESSAGE RETURNED?
 BNZ SKIPWTO IF NOT, SKIP WTO
 LR 4,0 SAVE WTO LIST ADDRESS
 XR 0,0
 USING TEM,4
 WTO MF=(E,TEMWTO) WRITE MESSAGE TO OPERATOR
 L 0,TEMSL LOAD LENGTH AND SUBPOOL
 FREEMAIN R,LV=(0),A=(4)
 RELEASE MESSAGE STORAGE AREA
 DROP 4
SKIPWTO DS 0H
 .
 . [perform recovery processing]
 .
RETURN L 13,4(,13) RESTORE PREVIOUS SAVE AREA ADDRESS
 LR 14,5 RESTORE RETURN ADDRESS
 XR 15,15 UPDATE GENERAL RETURN CODE
 XR 0,0 CLEAR CONDITIONAL COMPLETION CODE
RECURSIV DS 0H
 BR 14 RETURN TO THE API
 LTORG
 .
 .
 .
SYNADSAV DS 18F EXIT ROUTINE SAVE AREA
 TDSECT TEM GENERATE TEM DSECT

3–22 Assembler API Concepts

Specifying and Using Exit Routines

Asynchronous Exit Routines

Asynchronous exit routines, in contrast to synchronous exit routines, do not act
as extensions to the part of the application program that was executing when the
event associated with the exit routine occurred. The events that cause invocation
of asynchronous exit routines are unpredictable, whereas synchronous exit
routines can be invoked only at predictable points, for instance, immediately
after the associated TCHECK or TPL-based macro instruction.

Asynchronous exit routines can interrupt the mainline program at any time,
even if the mainline program is currently suspended (for example, because it
issued a TCHECK or WAIT macro instruction). However, no API-invoked
asynchronous exit routine can interrupt another asynchronous exit routine; thus
each asynchronous exit routine must return to the API before the next
asynchronous exit routine can be given control.

When an asynchronous event occurs, the associated exit routine (if defined by
the application program) is scheduled by the API by being put on a transport
user exit queue. If the mainline program is currently in control, execution of the
mainline program is suspended and control is immediately given to the exit
routine. If another asynchronous exit routine is in control, that exit routine must
return to the API before the next exit routine on the user exit queue can be given
control. If the asynchronous exit routine currently in control suspends execution
(for example, by issuing TCHECK or WAIT), it prevents other asynchronous exit
routines from gaining control. When the final asynchronous exit routine returns
to the API (the transport user exit queue is now empty), the mainline program
resumes control at the point where it was interrupted.

The API schedules exits only for the API events, and is unaware of asynchronous
exits scheduled by other program products or the operating system. Therefore,
the serialization of asynchronous exits described here only applies to the API
exits, and only applies to exits for one transport user (that is, task).

Example The API asynchronous exits can be interrupted by VTAM exits, and VTAM
asynchronous exits can be interrupted by the API exits. Additionally, the API
and VTAM exits can be interrupted by asynchronous exits scheduled by MVS
(for example, STIMER exits).

The application program must implement the appropriate serialization
mechanisms when common data areas can be accessed by different
asynchronous exit routines that are interruptible by one another.

Program Synchronization and Control 3–23

Specifying and Using Exit Routines

Register Information When an asynchronous exit routine is entered, the general-purpose registers
contain this information:

R0 Unpredictable.

R1 Address of TPL or TXP.

R2-12 Unpredictable.

R13 Unpredictable.

R14 API return address.

R15 Address of exit routine.

Asynchronous Exit
Routine Coding
Procedures

These procedures should be followed when coding an asynchronous exit
routine:

■ Asynchronous exit routines must return control with a BR 14 after register 14
is restored with the address it contained when the exit routine was entered.

■ Except for general-register 14, the exit routine is not required to save the API
registers; register 13 does not contain the address of an API or application
program save area.

■ If the exit routine issues any TPL-based macro instructions or calls any
external routines, it must provide the address of its own 18-word save area
in register 13.

■ The AOPEN or ACLOSE macro instruction cannot be executed in an
asynchronous exit routine (the API or otherwise). The AOPEN or ACLOSE
macro instruction must always be executed from the mainline program.

■ Care must be taken not to reuse save areas still in use by other parts of the
application program. For example, the save area used by the mainline
program when a TPL-based macro instruction is issued is in use until the
API returns to the mainline program. It should not be used by an
asynchronous exit routine in the meantime.

■ If the exit routine issues a TPL-based macro instruction and completion is
awaited in the same routine (for example, by the use of TCHECK or WAIT)
the mainline program, as well as the exit routine, is suspended until the
requested operation completes. To avoid such delays, consider using a TPL
exit routine for notification of completion.

Since asynchronous exit routines are serialized by the API, they are not normally
reentered. However, if the same asynchronous exit routine is shared by two or
more tasks, it must be coded to be reentrant. In this case, save areas and work
areas should be allocated dynamically.

3–24 Assembler API Concepts

Specifying and Using Exit Routines

Asynchronous Exit
Routine Example

Here is an example of an asynchronous exit routine. In this example, the exit
routine is entered when data is available to be received. The exit routine issues
a TRECV macro instruction in asynchronous mode and returns to the API. The
TPL completion exit is also shown.
**

* ASYNCHRONOUS EXIT ROUTINE TO HANDLE DATA INDICATIONS
**
 USING DORECV,12
DORECV LR 12,15 ESTABLISH BASE ADDRESS
 LR 2,1 MOVE TXP ADDRESS
 LR 3,14 SAVE RETURN ADDRESS
 LA 13,SAVEAREA ESTABLISH SAVE AREA
 USING TXP,2
 L 4,TXPEPID LOAD ENDPOINT ID
 LA 5,RECVTPL LOAD RECEIVE TPL ADDRESS
 USING TPL,5
 TRECV EP=(4),MF=(E,(5)) INITIATE RECEIVE REQUEST
 LTR 15,15 REQUEST ACCEPTED?
 BZ RECVEXIT IF SO, RETURN TO API
RECVERR DS OH
 .
 . [perform error recovery processing]
 .
 DROP 2
 USING RECVDONE,15
**
* TPL EXIT ROUTINE FOR TRECV SERVICE REQUEST
**
RECVDONE L 12,=A(DORECV) ESTABLISH COMMON BASE ADDRESS
 DROP 15
 LR 5,1 MOVE TPL ADDRESS
 LR 3,14 SAVE RETURN ADDRESS
 LA 13,SAVEAREA ESTABLISH SAVE AREA
 TCHECKMF=(E,(1)) CHECK TPL AND SET INACTIVE
 LTR 15,15 RECEIVE SUCCESSFUL?
 BNZ RECVERR IF NOT, GO HANDLE ERROR
 .
 . [received data is now available for processing]
 .
RECVEXIT LR 14,3 RESTORE RETURN ADDRESS
 BR 14 RETURN TO API
 DROP 5,12
 LTORG
 .
 .
 .
RECVTPL TRECV DABUF=DATAAREA,DALEN=L'DATAAREA, +
 OPTCD=ASYNC,EXIT=RECVDONE,MF=L
* TPL FOR RECEIVING DATA
DATAAREA DS XL1024 RECEIVE DATA BUFFER
SAVEAREA DS 18F EXIT ROUTINE SAVE AREA
 TDSECT TXP,TPL GENERATE DSECTS

Program Synchronization and Control 3–25

Specifying and Using Exit Routines

Exit Routine Parameter List

The value passed to an exit routine in register one is always the address of a
parameter list. For the SYNAD, LERAD, and TPL exit routines, this parameter
list is the TPL, which is in error or has just completed. For all other exit routines,
a common API data structure is used to pass exit routine parameters. This data
structure is defined by the TXP DSECT. Refer to the Unicenter TCPaccess
Communications Server Assembler API Macro Reference for more information.

Transport Endpoint
Exit Parameters (TXP)

The following table shows the transport endpoint exit parameters (TXP).

TXP+0 TXTYPE Reserved

+4 TXPEPID

+8 TXPEXIT

+12 TXPPARM

+16 TXPACNTX

+20 TXPUCNTX

+24 TXPECNTX

+28 TXPPARM2

TXP Information The TXP DSECT can be generated by the TDSECT macro instruction.

The following describes the contents of the TXP.

TXPTYPE A halfword integer value indicating the type of exit.

The exit type defines the contents of the TXPPARM field.

TXPEPID Identifies the endpoint associated with the event.
 If there is no endpoint associated with the event (for example,
TPEND exit), the value of this field is zero.

TXPEXIT Contains the entry point address of the exit routine.
The API uses this field to schedule the exit routine.

TXPPARM Contains a fullword parameter that is exit-dependent.
For protocol event exits, the parameter identifies a particular
protocol event. For the TPEND exit, this field contains a reason
code.

TXPACNTX Contains a word of context associated with the application
program.
This value is copied from the APCB and is specified by the
ACNTX keyword on the APCB macro instruction.

3–26 Assembler API Concepts

Specifying and Using Exit Routines

TXPUCNTX Contains a word of context associated with the endpoint.
This value is copied from an internal data structure and is equal
to the value specified by the UCNTX keyword on the TOPEN
macro instruction.

TXPECNTX Contains a word of context associated with the language
environment.
If the language environment is assembler language, this value is
equal to the value specified by the ECNTX keyword on the
APCB macro instruction.

TXPPARM2 Contains additional exit-dependent information.
In the case of data indication, it is the amount of available
window space.

The TXP is dynamically formatted in key-0 storage and cannot be modified by an
exit routine executing with its normal private-area key.

How Exit Routines Are Used

This section summarizes all API exit routines and provides an exit routine
register usage summary. Usage of each exit routine is also discussed.

Exit Routine Summary

This table lists each API exit, the type of exit, how and when it is specified, and
the purpose for which it is used.

Exit Type How
Specified*

When Specified Purpose

CONFIRM Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to receive a confirm indication.
Exit routine should respond by
issuing a TCONFIRM macro
instruction.

CONNECT Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to receive a connect indication.
Exit routine should respond by
issuing a TLISTEN macro
instruction.

Program Synchronization and Control 3–27

Specifying and Using Exit Routines

Exit Type How
Specified*

When Specified Purpose

DATA Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to receive a normal data
(COTS) or datagram (CLTS)
indication. Exit routine should
respond by issuing a TRECV or
TRECVFR macro instruction.

DGERR Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to receive a datagram error
indication. Exit routine should
respond by issuing a TRECVERR
macro instruction.

DISCONN Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to receive a disconnect
indication. Exit routine should
respond by issuing a TCLEAR
macro instruction.

LERAD Synchronous TEXLST AOPEN only Used to recover from program logic
errors that typically occur during
program debugging.

RELEASE Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to receive a release indication.
Exit routine should respond by
issuing a TRELACK macro
instruction.

SENDWIND Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to notify MODE=SOCKETS
endpoints that the send window has
opened.

SYNAD Synchronous TEXLST AOPEN only Used to recover from physical errors
and exceptional conditions.

TPEND Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Called when the transport provider
or the API is stopped or terminated.
Exit routine should initiate
shutdown procedures.

APEND Asynchronous TEXLST AOPEN only Called when the API is stopped or
terminated. Exit routine should
initiate shutdown procedures.

3–28 Assembler API Concepts

Specifying and Using Exit Routines

Exit Type How
Specified*

When Specified Purpose

TPL Asynchronous EXIT
operand on
TPL-based
macro
instruction

Any TPL- based
service request

Called when the requested operation
is complete. Exit routine should
issue TCHECK macro instruction to
set TPL inactive.

XDATA Asynchronous TEXLST or
TEVNTLST

AOPEN or TOPEN Used to receive an expedited data
indication. Exit routine should
respond by issuing a TRECV macro
instruction.

* Any exit that can be specified on a TOPEN TEXLST can be specified on a
TOPEN TEVNTLST as well.

Register Usage Summary

The following table summarizes the register usage for each type of exit routine.

 Contents Of General-Purpose Registers On Entry To Exit Routine

Exit Register 0 Register 1 Register 2-12 Register 13 Register 14 Register 15

CONFIRM Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

CONNECT Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

DATA Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

DGERR Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

DISCONN Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

LERAD Recovery action
code

Address of
TPL

Unmodified Unmodified API return
address

Address of
exit routine

RELEASE Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

SENDWIND Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

SYNAD Recovery action
code

Address of
TPL

Unmodified Unmodified API return
address

Address of
exit routine

Program Synchronization and Control 3–29

Specifying and Using Exit Routines

 Contents Of General-Purpose Registers On Entry To Exit Routine

Exit Register 0 Register 1 Register 2-12 Register 13 Register 14 Register 15

TPEND Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

APEND Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

TPL Unpredictable Address of
TPL

Unpredictable Unpredictable API return
address

Address of
exit routine

XDATA Unpredictable Address of
TXP

Unpredictable Unpredictable API return
address

Address of
exit routine

Note: For APEND exits, the TXPUCNTX field is not set; the TXPAPCB field is
set.

TPL Completion Exit

A TPL exit routine is entered after a TPL-based operation completes if the TPL or
the macro instruction using it specified the exit routine address in the EXIT
operand. Specifying an exit routine forces the synchronization mode to be
asynchronous (OPTCD=ASYNC).

The TPL exit routine is entered with the address of the TPL in register one. The
TPL is marked complete, but remains active until a TCHECK macro instruction
is executed. The TCHECK macro instruction can be issued by the TPL exit
routine, or later by posting an ECB on which the mainline program is waiting. If
the TCHECK macro instruction is issued before the TPL exit routine is entered,
TCHECK returns with an error.

If the application program identifies a SYNAD or LERAD exit routine in the exit
list provided to AOPEN, the appropriate exit routine is entered if the TPL service
request completed with an error. Otherwise, the TPL exit routine should check
register 15 returned by the TCHECK macro instruction, or check the return code
fields of the TPL to determine if the request completed successfully.

The exit routine can initiate additional API service requests using the same TPL,
or can supply a different TPL. If additional TPL-based requests are executed, it is
best that the exit routine not wait for completion, otherwise entry into other
asynchronous exit routines may be delayed. Newly initiated requests should
specify posting of an ECB or a TPL exit routine, which in the latter case, may be
the same exit routine. When processing completes, control must be returned to
the API by branching to the address contained in register 14 when the exit
routine was entered.

3–30 Assembler API Concepts

Specifying and Using Exit Routines

Protocol Event Exits and ECBs

Certain protocol events can be handled asynchronously by the application
program. These protocol events generally correspond to T.indication or
T.confirm primitives issued by the transport provider.

All protocol event exits are entered with register 1 containing the address of a
TXP. The TXP identifies the exit type (TXPTYPE) as a protocol event
(TXPTPROT), TXPEPID contains the endpoint ID for the endpoint associated
with the protocol event, and TXPPARM contains a fullword value identifying
the particular event. The event code is in multiples of four and can be used as a
branch or table index to locate the appropriate processing routine.

The following protocol event codes are defined:

Name Dec Hex Exit Protocol Event

TXPECONN 0 X’00’ CONNECT Connect indication.

TXPECONF 4 X’04’ CONFIRM Confirm indication.

TXPEDATA 8 X’08’ DATA Normal data (or
datagram) indication.

TXPEXPDT 12 X’0C’ XDATA Expedited data
indication.

TXPERROR 16 X’10’ DGERR Datagram error
indication.

TXPEDISC 20 X’14’ DISCONN Disconnect indication.

TXPERLSE 24 X’18’ RELEASE Orderly release
indication.

TXPESWND 28 1C SENDWIND Send Window Open.

The event code is used by the API to determine which exit routine address to
load from the exit list. Therefore, the application program can supply a different
exit routine for each protocol event, or supply a common exit routine that
handles all events, or a particular subset of events. If no exit routine is specified
in the TOPEN or AOPEN exit list, the application program cannot receive
asynchronous notification of the corresponding protocol event.

A protocol event exit routine generally issues an appropriate TPL-based macro
instruction to clear the pending indication. Since the indication serves to notify
the application program that some awaited event has occurred, it is generally
safe to issue the responding macro instruction in synchronous mode without fear
of suspending the exit routine for an indefinite period. However, the exit routine
must be suspended long enough for the API address space to complete the
service request.

Program Synchronization and Control 3–31

Specifying and Using Exit Routines

Note: For optimum performance, it may be better to execute the request in
asynchronous mode and supply a TPL exit routine to handle the subsequent
completion.

The exit routine is not obliged to clear the pending indication in the exit routine.
Instead, an ECB could be posted on which the mainline program is waiting.
When the exit routine completes its processing, control must be returned to the
API by branching to the address contained in register 14 when the exit routine
was entered.

CONNECT Event The CONNECT exit routine is scheduled or the ECB is posted when a connect
indication is generated and no TLISTEN service request is outstanding. That is,
the TLISTEN request is issued and is awaiting completion. A connect indication
is generated by the API on receiving a T-CONNECT.indication primitive issued
by the transport provider. Connect indications can only be generated on
endpoints in the enabled (TSENABLD) or connect-indication-pending
(TSINCONN) state.

The CONNECT exit routine should execute a TLISTEN macro instruction to
receive the connect indication. Once a connect indication is received with
TLISTEN, it is said to be pending until accepted or rejected with a TACCEPT or
TREJECT macro instruction. The exit routine is not obliged to issue the TLISTEN
request, and may defer this responsibility to the mainline program by posting an
ECB. Similarly, the TACCEPT or TREJECT macro instruction may be issued by
the mainline program or in a subsequent TPL completion exit to prevent
suspension of the CONNECT exit routine.

Once the CONNECT exit routine is scheduled, it is not rescheduled until all
available connect indications are received by a TLISTEN macro instruction. If
another T-CONNECT.indication is issued by the transport provider, it is queued
without rescheduling the CONNECT exit routine. Therefore, once the
CONNECT exit routine is entered, sufficient TLISTEN service requests should be
issued to receive all of the indications that were queued. The COUNT field
(TPLCOUNT) returned in the TPL by TLISTEN indicates the number of
additional connect indications to be received. Also, a bit (TOMORE) is set in the
option code field (TPLOPCD2) to indicate more connect indications are
available. The application program should receive and accept or reject connect
indications quickly since a limited number may be queued (see the QLSTN
parameter on the TBIND macro instruction in the Unicenter TCPaccess
Communications Server Assembler API Macro Reference).

When associations are used with an endpoint operating in connectionless mode
(CLTS), datagrams arriving from a new source address cause a connect
indication to be simulated. The datagram is queued until the connect indication
is received and accepted. Thus, the CONNECT exit routine can be used to form
CLTS associations in the same manner it is used to establish COTS connections.

3–32 Assembler API Concepts

Specifying and Using Exit Routines

CONFIRM Event The CONFIRM exit routine is scheduled when a confirm indication is
generated and no TCONFIRM service request is outstanding. A confirm
indication is generated by the API on receiving a T-CONNECT.confirm
primitive issued by the transport provider.

Confirm indications can only be generated on endpoints in the connect-in-
progress (TSOUCONN) state. That is, a TCONNECT macro instruction has
successfully executed at the endpoint and the application program is awaiting
connect confirmation).

The CONFIRM exit routine should execute a TCONFIRM macro instruction to
receive the confirm indication.

If the TCONFIRM macro instruction completes successfully, the connection is
established and the state of the endpoint becomes connected (TSCONNCT).

If the application program no longer desires to establish the connection, a
TDISCONN macro instruction should be executed instead.

The exit routine is not obliged to receive (or clear) the confirm indication and can
defer this responsibility to the mainline program by posting an ECB on which it
is waiting.

A confirm indication can only occur as the result of a successful TCONNECT
service request. Therefore, only one confirm indication can be received on a
given endpoint until the connection is released, and another TCONNECT
request is issued. If the endpoint is operating in connectionless mode with
associations, a confirm indication is simulated when the TCONNECT request is
issued. Thus, the CONFIRM exit routine can be used to form CLTS associations
in a manner similar to COTS connections.

DATA Arrival Event The DATA exit routine is scheduled when a normal data indication is
generated and no TRECV service request is outstanding. A normal data
indication is generated by the API on receiving a T-DATA.indication primitive
from the transport provider. Normal data indications can only be generated on
endpoints in the connected (TSCONNCT) or release-in-progress (TSOURLSE)
state.

The DATA exit routine should execute a TRECV macro instruction to receive the data buffered for the
endpoint. Alternatively, the DATA exit routine can defer this responsibility to the mainline program by
posting an ECB on which it is waiting.

Note: Optimum performance is achieved by receiving the data as soon as possible.

Program Synchronization and Control 3–33

Specifying and Using Exit Routines

Once the DATA exit routine is scheduled, it is not rescheduled until all available
data is received by the application program. If another T-DATA.indication
primitive is issued by the transport provider and some previous data has not yet
been received, new data is buffered at the endpoint without rescheduling the
DATA exit routine. Therefore, once the DATA exit routine is entered, sufficient
TRECV service requests should be issued to receive all of the available data. A
bit (TOMORE) is set in the option code field (TPLOPCD2) of the TPL to indicate
more data is available to be received (see the description of the TRECV macro
instruction in the Unicenter TCPaccess Communications Server Assembler API Macro
Reference).

Note: Expedited data can arrive at the endpoint and be received by subsequent
TRECV macro instructions. A bit (TOEXPDTE) is set in the option code field
(TPLOPCD2) to indicate expedited data was received. See XDATA Event for
more information on expedited data.

A CLTS endpoint operates in a similar fashion. The DATA exit routine is
scheduled when a datagram indication is generated and no TRECVFR service
request is outstanding. In this case, a datagram indication is generated by the
API on receiving a T-UNITDATA.indication primitive from the transport
provider. Datagram indications can only be generated on CLTS endpoints that
are in the disabled (TSDSABLD) state. Once the DATA exit routine is scheduled,
it is not rescheduled until all buffered datagrams are received by the application
program.

DGERR Event The DGERR exit routine is scheduled whenever the transport provider
indicates to the API that it could not deliver a datagram previously transferred
with a TSENDTO service request. The transport provider detected the error
after the TSENDTO request completed successfully.

Note: Datagram error indications can only occur on CLTS endpoints that are in
the disabled (TSDSABLD) state.

The DGERR exit routine should execute a TRECVERR macro instruction to
receive the protocol address and protocol options associated with the datagram
in error. A protocol-dependent datagram error code is also returned (see the
Unicenter TCPaccess Communications Server Assembler API Macro Reference for
more information).

Note: Connectionless-mode service is unreliable. The fact that the DGERR exit
routine is not entered does not imply that a particular datagram was delivered
successfully. Generally, errors that cause the DGERR exit routine to be entered
are detected locally before the datagram is transmitted onto the network, such as
an invalid protocol address.

3–34 Assembler API Concepts

Specifying and Using Exit Routines

DISCONN Event The DISCONN exit routine is scheduled in response to receiving a
T-DISCONNECT.indication primitive from the transport provider.

A disconnect indication can be generated for a COTS endpoint that is in one of
the following states:

■ Connect-indication-pending (TSINCONN)

■ Connect-in-progress (TSOUCONN)

■ Connected (TSCONNCT)

■ Release-indication-pending (TSINRLSE)

■ Release-in-progress (TSOURLSE)

The disconnect indication serves to notify the application program that an
established connection was released or a connection attempt was abandoned.
The exit routine should execute a TCLEAR macro instruction that returns the
endpoint to the enabled or disabled state. Alternatively, the exit routine may
post an ECB waited on by the mainline program, and the mainline program can
issue the TCLEAR macro instruction. The TCLEAR macro instruction receives
information associated with the disconnect indication, including disconnect user
data and a protocol-dependent disconnect reason code.

Only one disconnect indication can be generated per established connection or
connection attempt. A disconnect indication is never generated for a CLTS
endpoint.

RELEASE Event The RELEASE exit routine is scheduled when a release indication is generated
and no TRELACK service request is outstanding. A release indication is
generated by the API on receiving a T-RELEASE.indication primitive from a
transport provider that supports orderly release of a connection. Release
indications can only be generated on endpoints in the connected (TSCONNCT)
or release-in-progress (TSOURLSE) state.

The RELEASE exit routine should execute a TRELACK macro instruction to
acknowledge the release indication. Alternatively, the exit routine may post an
ECB on which the mainline program is waiting, and the mainline program can
acknowledge the release indication.

The RELEASE exit routine is not scheduled until all available data is received by
the application program. After the release indication is received, no more TRECV
macro instructions should be executed at the endpoint. However, the endpoint
can continue to send data until a TRELEASE macro instruction is executed.

Program Synchronization and Control 3–35

Specifying and Using Exit Routines

Only one release indication is generated per established connection, and can
only be generated on endpoints for which the orderly release option was
selected. If the endpoint is operating in connectionless mode using associations,
the optional orderly release service is automatically selected. In this case, a
release indication is simulated when the application program executes a
TRELEASE macro instruction.

Send Window
Opened Protocol
Event

The Send Window Opened protocol event is scheduled when an endpoint is
defined with MODE=SOCKETS and the event is defined in the TEVENTLST or
TEXLST macro. The exit can be specified on the TEVNTLST or TEXLST macro,
where SENDWIND=parameter. The ECB can be specified on the TEVNTLST
macro, where SENDWIND=(<addr>, ECB).

After a series of TSEND or TSENDTO requests have used all of the available
send-buffer space, the Send Window Opened protocol event is armed. The
protocol event is triggered when send buffer space becomes available. TCP
acknowledgment (ACK) of sent data causes buffer space to become available. In
the case of UDP, buffer space is released as soon as datagrams using the buffer
space are placed on the network.

XDATA Event The XDATA exit routine is scheduled when an expedited data indication is
generated and no TRECV service request is outstanding. An expedited data
indication is generated by the API on receiving a T-
EXPEDITED-DATA.indication primitive from the transport provider.
Expedited data indications can only be generated on COTS endpoints in the
connected (TSCONNCT) or release-in-progress (TSOURLSE) state.

The XDATA exit routine should execute a TRECV macro instruction to receive
the data buffered for the endpoint. Alternatively, the XDATA exit routine can
defer this responsibility to the mainline program by posting an ECB on which it
is waiting. However, optimum performance is achieved by receiving the data as
soon as possible.

Once the XDATA exit routine is scheduled, it is not rescheduled until all
available data is received by the application program. If another
T-EXPEDITED-DATA.indication primitive is issued by the transport provider
and some previous data was not received, new data is buffered at the endpoint
without rescheduling the XDATA exit routine. Therefore, once the XDATA exit
routine is entered, sufficient TRECV service requests should be issued to receive
all of the available data. A bit (TOMORE) is set in the option code field
(TPLOPCD2) to indicate more data is available to be received (see the Unicenter
TCPaccess Communications Server Assembler API Macro Reference for more
information).

3–36 Assembler API Concepts

Specifying and Using Exit Routines

For scheduling exit routines, expedited data is treated as normal data if no
XDATA exit routine is specified. If the DATA and XDATA exit routines have
both been specified, an expedited data indication is generated if no expedited
data is available to be received and new expedited data arrives. However, if
expedited data is pending, newly arriving normal data does not generate a
normal data indication, and the DATA exit routine is not scheduled.

Scheduling of DATA
and XDATA Exit
Routines

The following table summarizes when the DATA and XDATA exit routines are
scheduled.

Note: The column labeled Data Pending indicates whether data of the specified
type is already available when new data arrives at the endpoint. Expedited data
is not supported for CLTS endpoints operating in association mode.

Exit Routine
Specified

Data
Pending

 Exit Routine

Data Xdata Normal Expedited New Data Scheduled

No No No/Yes No/Yes Any None

No Yes No/Yes No/Yes Normal None

 No/Yes No Expedited XDATA

 No/Yes Yes None

Yes No No No Any DATA

 No Yes None

 Yes No None

 Yes Yes None

Yes Yes No No Normal DATA

 No Yes None

 Yes No None

 Yes Yes None

 No No Expedited XDATA

 No Yes None

 Yes No XDATA

 Yes Yes None

Program Synchronization and Control 3–37

Specifying and Using Exit Routines

SYNAD/LERAD—Synchronous Error Recovery Exits

The API supports two synchronous error recovery exit routines:

■ The SYNAD exit routine: Used to handle physical errors and exceptional
conditions

■ The LERAD exit routine: Used to handle program logic errors

If the appropriate error recovery exit routine is not provided by the application
program, the detection and recovery from such errors must be handled inline
with the macro instruction. The SYNAD and LERAD exit routines are specified
in the AOPEN exit list and apply to all endpoints opened by a given transport
user (that is, the application program task).

The SYNAD or LERAD exit routine can be entered at two different points during
the execution of any TPL-based service request:

■ If the initial request for the operation fails (after it is rejected)

■ If the request is accepted, after the operation fails (after it is completes
abnormally)

If the TPL-based macro instruction is executed in asynchronous mode, then the
first point occurs just prior to returning control to the next sequential instruction
following the TPL-based macro instruction, and the second point occurs just
prior to returning control to the next sequential instruction following the
corresponding TCHECK macro instruction.

If the TPL-based macro instruction is executed in synchronous mode, then the
TCHECK function is embedded, and the application program cannot distinguish
at which point entry was made.

In either case, entry into a SYNAD or LERAD exit routine is made no more than
once for any given instance of a TPL-based macro instruction.

The SYNAD or LERAD exit routine is entered with the TPL address in register
one, and a recovery action code in register zero. The recovery action code can be
used to determine error recovery procedures. This is the same recovery action
code that is returned to the application program if a SYNAD or LERAD exit
routine is not specified. The value of the recovery action code also determines
which exit routine is entered. Therefore, the SYNAD and LERAD exit list
addresses can specify a common exit routine, or separate exit routines tailored
for their individual use.

3–38 Assembler API Concepts

Specifying and Using Exit Routines

Register 14 contains an address in the API that the exit routine should branch to
if it desires to return control to the next sequential instruction in the application
program. If control is returned, the contents of registers zero and 15 is passed
through to the application program, and the contents of registers 2-12 is restored
from the save area whose address is in register 13. The exit routine should take
care not to modify the contents of the save area or the save area address. If the
exit routine requires its own save area, one should be allocated, and the contents
of register 13 should be restored before returning to the API.

On entry to the SYNAD or LERAD exit routine, registers 2-12 contain the
application program’s general-purpose registers at the time the initial request
was issued or when the TCHECK macro instruction was executed, depending at
which point the exit routine was called. The exit routine can take advantage of
this fact if it knows how those registers are used by the application program. The
exit routine is free to use the registers for any purpose without restoring them
before returning to the API.

If the TCHECK or TPL-based macro instruction that caused entry into the
SYNAD or LERAD exit routine used one of the general registers between two
and 12 inclusive to contain the TPL address, bit zero of that register is copied
into bit zero of register one. If the mainline program assures that bit zero is
always reset when issuing a TPL-based request, and the exit routine assures bit
zero is set when issuing such a request, recursion can be detected by testing
register one. Any SYNAD or LERAD exit routine that issues TPL-based requests
should test for recursion or risk entering an endless loop.

SYNAD/LERAD Errors There are some circumstances when the SYNAD or LERAD exit routine cannot
be entered. This happens when a fatal error occurs before the proper
environment can be established to call the exit routine. In this case, control is
always returned to the next sequential instruction in the application program.

The general return code in register 15 is greater than four, indicating that a fatal
error occurred. This usually occurs before a TPL-based request is accepted, but
can also occur on a TCHECK macro instruction if the TPL or some internal
control block has become corrupted.

The following are examples of fatal errors that prevent scheduling of the SYNAD
or LERAD exit routine:

■ An invalid function code was detected

■ The TPL does not contain a valid control block identifier, or resides in store-
protected memory

■ The TPL does not contain a valid endpoint ID

■ The APCB or internal API control blocks have become corrupted

■ The APCB is closed

Program Synchronization and Control 3–39

Specifying and Using Exit Routines

If control is returned to the API, register 15 should contain a general return code
that the application program can test for success or failure. If the exit routine was
able to recover from the error, a zero should be returned to indicate success. This
appears to the application program as if no error occurred. Otherwise, a non-
zero value should be returned. We recommend that the exit routine use values
consistent with the design of the API.

If the exit routine chooses not to return, control continues as if there were a
branch to the exit routine immediately following the TCHECK or TPL-based
macro instruction. However, this is permitted only if the TCHECK or TPL-based
macro instruction was executed by the mainline program, or an extension
thereof. If the SYNAD or LERAD exit routine was entered from a macro
instruction executed by an asynchronous exit routine, be careful to always return
to the API so the asynchronous exit routine can also return control.

LERAD Exit Routine The LERAD exit routine is entered when a program logic error occurs.

Errors of this type are generally detected early before a TPL-based request is
accepted by the API. The recovery action code in register zero is set to one of
the following values:

Name Dec Hex Type Of Error

TAFORMAT 16 X’10’ Format or specification error.

TAPROCED 20 X’14’ Sequence or procedural error.

TATPLERR 24 X’20’ Logic error with no TPL return code.

TAFORMAT and TAPROCED errors enter the LERAD exit routine with the TPL
set inactive and the TPLRTNCD field containing valid return code information.
The specific error code (TPLERRCD) and diagnostic code (TPLDGNCD) contain
additional information regarding the error.

If the recovery action code is set to TATPLERR, the TPL is still active and return-
code information could not be stored. This recovery action code can occur as the
result of one of the following circumstances:

■ A TPL-based request was issued and the associated TPL was active

■ A TCHECK macro instruction was executed before the TPL was marked
complete.

The second circumstance can only occur for asynchronous requests for which a
TPL exit routine was specified. That is, the TCHECK macro instruction was
executed before the exit routine was entered. For this recovery action code there
is no way for the exit routine to differentiate the cause of the error.

3–40 Assembler API Concepts

Specifying and Using Exit Routines

Program logic errors typically occur while an application program is being
developed and debugged. Hopefully, once debugging is complete, errors of this
type do not occur. Therefore, it is unusual for a LERAD exit routine to attempt to
recover from such errors. The best course of action is to dump the address space
and terminate the application program.

SYNAD Exit Routine The SYNAD exit routine is entered when a physical error or exceptional
condition occurs. Unlike program logic errors, which tend not to occur after a
program is debugged, these errors can happen at any time and often occur after
a TPL-based request is accepted by the API.

The recovery action code in register zero is set to one of these values:

Name Dec Hex Type Of Error

TAEXCPTN 4 X’04’ Exceptional condition

TAINTEG 8 X’08’ Connection or data integrity error

TAENVIRO 12 X’0C’ Environmental error

The SYNAD exit routine is always entered with the TPL set inactive and the
TPLRTNCD field containing valid return-code information stored by the API. A
copy of the recovery action code is stored in the TPL (TPLACTCD) along with a
specific error code (TPLERRCD) and a diagnostic code (TPLDGNCD). This
information can be used to determine more precisely the particular cause of the
error.

The SYNAD exit routine may choose to merely log the occurrence of an error
and record pertinent diagnostic information, or may attempt to recover from the
error. If necessary, additional TPL-based macro instructions may be issued to
affect recovery. However, the exit routine should implement an appropriate
mechanism (see SYNAD/LERAD—Synchronous Error Recovery Exits) to detect
recursion caused by reentry into the exit routine. If recovery from the error is
successful, registers 15 and zero can be set accordingly so that the mainline
program is unaware of the occurrence of the error, and processing can continue
as usual.

Program Synchronization and Control 3–41

Specifying and Using Exit Routines

TPEND Exit Routine or ECB

The TPEND exit routine is entered when the transport provider terminates (or is
about to terminate) and can no longer provide service to the application
program. The TPEND exit routine is entered asynchronously with register one
containing the address of a TXP.

The TXP identifies the exit type (TXPTYPE) as a TPEND exit (TXPTPEND), the
endpoint ID (TXPEPID) is set to zero since no endpoint is associated with this
event, and the exit routine parameter (TXPPARM) gives the reason for the
termination. The reason code is in multiples of four and can be used as a branch
or table index to locate the appropriate processing routine.

These reason codes are defined as follows.

Name Dec Hex Reason For Termination

TXPRDRAN 0 X’00’ Operator drained subsystem.

TXPRSTOP 4 X’04’ Operator stopped subsystem.

TXPRTERM 8 X’08’ Subsystem abnormally terminated.

Entering the TPEND
Exit Routine

The TPEND exit routine is normally entered three times.

■ The first time occurs when the system operator enters a command from the
operator’s console to drain the API subsystem.

 This command is entered in anticipation of shutting down the subsystem.
Existing transport service users are allowed to continue normal operation,
but new transport users are not allowed to establish sessions with the
transport provider. That is, AOPEN macro instructions are completed with
an error (APCBEDRA).

 When the TPEND exit routine is entered with the reason code set to
TXPRDRAN, a variable should be set to prevent the application program
from attempting to define any new transport service users. That is, prevent
AOPEN macro instructions from being issued. If the application program is
serving interactive users, they should be informed by whatever means are
appropriate that the network subsystem may be shut down soon, and should
be encouraged to complete their use of any network resources accessed via
the API.

This entry into the TPEND exit routine only serves as a warning that a
shutdown of the subsystem is about to happen. Any TPL-based request
issued after the TPEND exit routine is entered is completed conditionally.
That is, if no other errors occur and the function is allowed in drain mode,
the request is completed normally with TRSTOP set in the conditional
completion code returned in the TPL (and register zero). Any request that is
not allowed in drain mode is completed with TRFAILED/TEDRAIN.

3–42 Assembler API Concepts

Specifying and Using Exit Routines

■ The second entry into the TPEND exit routine occurs after the TPEND exit is
entered in drain mode for all endpoints.

In this case, the shutdown process has actually begun, and the application
program has a limited time to complete its use of the API services. No new
endpoints can be opened, but existing endpoints are allowed to continue
issuing certain TPL-based service requests required to shutdown the
application. Any allowable TPL-based request issued after the TPEND exit
routine is entered is completed conditionally. That is, if no other errors
occur, the request is completed normally with TCSTOP set in the conditional
completion code returned in the TPL (and register zero). Any request that is
not allowed during the stop phase is completed with TRFAILED/TESTOP.

■ The third and last entry into the TPEND exit routine occurs when the API
subsystem actually terminates, either normally or abnormally.

A second stop command can be issued to force this phase of termination. At
this point, the application program is only allowed to clean up resources in
its address space by issuing TCLOSE and ACLOSE macro instructions. In the
case of a graceful shutdown, the application program should have already
closed its endpoints and terminated its session with the API by the time
subsystem termination occurs.

Note: The TPEND exit is not guaranteed to be entered all three times.

Example If the system operator stops the API subsystem without first issuing a drain
command, the first entry does not occur. Similarly, if the subsystem is canceled
or abnormally terminates without a stop command, the second entry does not
occur.

If the application program does not specify a TPEND exit routine in its AOPEN
exit list, no asynchronous notification is given for the events previously
described. The application program has to rely on return-code information
stored in the TPL to detect the occurrence of a shutdown or subsystem
termination.

The TPEND exit routine for the API differs from the VTAM TPEND exit in that
all instances of the TPEND exit routine are scheduled by the API at the same
priority. Whereas VTAM schedules the termination instance at a higher priority
(when the reason code is X'08', VTAM schedules the TPEND exit routine so that
it preempts other asynchronous exit routines). For the API, all asynchronous exit
routines are executed serially, including all instances of the TPEND exit routine.

Program Synchronization and Control 3–43

Specifying and Using Exit Routines

APEND Exit Routine

The APEND exit routine is entered when the application subsystem is shut down
and can no longer provide service to the application program. The APEND exit
routine is entered asynchronously with register one containing the address of a
TXP. The TXP identifies the exit type (TXPTYPE) as an APEND exit
(TXPAPEND). Instead of an endpoint ID TXPAPCB is set to the APCB associated
with this event, and the exit routine parameter (TXPPARM) gives the reason for
the termination. The reason code is in multiples of four and can be used as a
branch or table index to locate the appropriate processing routine.

The following reason codes are defined:

Name Dec Hex Reason For Termination

TXPRDRAN 0 X’00’ Operator drained subsystem.

TXPRSTOP 4 X’04’ Operator stopped subsystem.

TXPRTERM 8 X’08’ Subsystem abnormally terminated.

Entering the APEND
Exit Routine

The APEND exit routine is normally entered three times.

■ The first time occurs when the system operator enters a command from the
operator’s console to drain the API subsystem.

 This command is entered in anticipation of shutting down the subsystem.
Existing transport service users are allowed to continue normal operation,
but new transport users are not allowed to establish sessions with the
transport provider. That is, AOPEN macro instructions are completed with
an error (APCBEDRA).

 When the APEND exit routine is entered with the reason code set to
TXPRDRAN, a variable should be set to prevent the application program
from attempting to define any new transport service users. That is, prevent
AOPEN macro instructions from being issued. If the application program is
serving interactive users, they should be informed by whatever means are
appropriate that the network subsystem may be shut down soon, and should
be encouraged to complete their use of any network resources accessed via
the API. This entry into the APEND exit routine only serves as a warning
that a shutdown of the subsystem is about to happen. Any TPL-based
request issued after the APEND exit routine is entered, are completed
conditionally. That is if no other errors occur and the function is allowed in
drain mode, the request is completed normally with TRSTOP set in the
conditional completion code returned in the TPL (and register zero). Any
request that is not allowed in drain mode is completed with
TRFAILED/TEDRAIN.

3–44 Assembler API Concepts

Specifying and Using Exit Routines

■ The second entry into the APEND exit routine occurs after the APEND exit is
entered in drain mode for all endpoints. In this case, the shutdown process
has actually begun, and the application program has a limited time to
complete its use of the API services. No new endpoints can be opened, but
existing endpoints are allowed to continue issuing certain TPL-based service
requests that are required to shutdown the application. Any allowable TPL-
based request issued after the APEND exit routine is entered is completed
conditionally. That is, if no other errors occur, the request is completed
normally with TCSTOP set in the conditional completion code returned in
the TPL (and register zero). Any request that is not allowed during the stop
phase is completed with TRFAILED/TESTOP.

■ The third and last entry into the APEND exit routine occurs when the API
subsystem actually terminates, either normally or abnormally. A second stop
command can be issued to force this phase of termination. At this point, the
application program is only allowed to clean up resources in its address
space by issuing TCLOSE and ACLOSE macro instructions. In the case of a
graceful shutdown, the application program should have already closed its
endpoints and terminated its session with the API by the time subsystem
termination occurs.

Note: The APEND exit is not guaranteed to be entered all three times.

Example If the system operator stops the API subsystem without first issuing a drain
command, the first entry does not occur. Similarly, if the subsystem is canceled
or abnormally terminates without a stop command, the second entry does not
occur.

If the application program does not specify an APEND exit routine in its AOPEN
exit list, no asynchronous notification is given for the events previously
described. The application program must rely on return-code information stored
in the TPL to detect the occurrence of a shutdown or subsystem termination.

The APEND exit routine for the API differs from the VTAM TPEND exit in that
all instances of the APEND exit routine are scheduled by the API at the same
priority. Whereas VTAM schedules the termination instance at a higher priority
(when the reason code is X'08', VTAM schedules the TPEND exit routine so that
it preempts other asynchronous exit routines). For the API, all asynchronous exit
routines are executed serially, including all instances of the APEND exit routine.

Program Synchronization and Control 3–45

Specifying and Using Exit Routines

Deriving Context in Exit Routines

Generally, the information passed to an exit routine is sufficient for providing
the context the application program needs for processing the event.

Example 1 The TPL address passed to SYNAD, LERAD, and TPL exit routines identifies the
particular request causing entry into the exit routine.

Similarly, the endpoint ID provided in the TXP for protocol events identifies the
endpoint at which the event occurred. However, when exit routines are shared
between multiple tasks, additional context may be required.

Asynchronous exit routines that are provided the address of a TXP in register
one can acquire additional context from the TXP itself.

Example 2 TXPACNTX is a word of context related to the transport user. It is acquired from
the APCB and is specified by the ACNTX parameter. It can be an arbitrary
fullword value, and is not interpreted by the API.

Similarly, TXPUCNTX is related to the endpoint and is specified when the
endpoint is opened by coding the UCNTX parameter on the TOPEN macro
instruction. The API merely copies this information into the TXP before the exit
routine is entered.

The TXPECNTX field provides context for the language environment. If a
higher-level language environment is not being used (ENVIRO=ASM is coded
on the APCB macro instruction), this field can be used by the application
program by specifying the ECNTX parameter on the APCB macro instruction.

For those exit routines that are not provided a TXP, a different technique can be
used. In this case, the exit routine is always provided the address of a TPL. Since
the application program provides the TPL, it can arrange to have the TPL located
relative to other information.

Example 3 The address of the TPL can be decremented by a known amount to obtain the
base of an application program control block. That is, the TPL is located at some
fixed offset within the control block, or the application program can place
information at the end of the TPL (that is, the TPL is extended in length to
include application program information).

3–46 Assembler API Concepts

Handling Errors and Special Conditions

Handling Errors and Special Conditions
This section describes two types of TPL-based requests:

■ Synchronous

For synchronous TPL-based requests, a single macro instruction is issued.
On return to the application program, error or exceptional-condition
information about the requested operation is available.

■ Asynchronous

 For asynchronous requests, two TPL-based macro instructions are required:

— A request macro instruction

— A TCHECK macro instruction

 Error and exceptional-condition information can thus be returned at two
different stages:

— As a result of the request for the operation being accepted

— If the request is accepted, as a result of the operation completing
successfully or unsuccessfully

Macro Information

Following a TPL-based macro instruction, information is available to the
application program about the acceptability of the request or about the
completion of the operation. This information can be provided by the API; or, if
an error or exceptional condition was detected and the API invoked the
program’s SYNAD or LERAD exit routine, register information is provided by
the exit routine.

This information consists of:

■ A return code in register 15 (termed the general return code)

■ In some cases a return code in register zero (termed either a recovery action
code or a conditional completion code)

■ Information in the TPL

The information stored in the TPL consists of a copy of the recovery action code
and conditional completion code, and when an error occurs, it also consists of a
specific error code and a diagnostic code.

Program Synchronization and Control 3–47

Handling Errors and Special Conditions

If an error or exceptional condition occurs, it can be analyzed and handled in
either the mainline program or exit routine in which the TPL-based request was
issued, or in the SYNAD or LERAD exit routine designated by the AOPEN exit
list. In either case, the analysis is performed by examining the return code
information provided in registers and stored in the TPL. These return codes are
discussed in more detail in General Return Codes .

General Return Codes
The following table provides a list of the general return codes

Name Dec Hex Meaning

TROKAY 0 X’00’ Request accepted or completed successfully.

TRFAILED 4 X’04’ Request not accepted or completed abnormally.

TRFATLFC 8 X’08’ Fatal error: invalid function code.

TRFATLPL 12 X’0C’ Fatal error: invalid TPL.

TRFATLAM 16 X’10’ Fatal error: internal access method error.

TRFATLAP 20 X’14’ Fatal error: APCB is closed or invalid.

The general return code also indicates what other information is available in
register zero and the return code field of the TPL.

Summary of Register
and TPL Return Codes

The following table summarizes the relationship of the general return code in
register 15 and other information returned to the application program.

 TPL Return Codes SYNAD or

LERAD
Exit Routine
Entered

Register 15 Register 0 TPLACTCD TPLERRCD

TROKAY X'00' Conditional
completion code

Recovery action code
(X'00')

Conditional
completion code

No

TRFAILED X'04' Recovery action code
or value from exit
routine

Recovery action code
(X'04' - X'14')

Specific error code Yes

TRFATLFC X'08' TPL function code No information
stored

No information stored No

TRFATLPL X'0C' Diagnostic code No information
stored

No information stored No

3–48 Assembler API Concepts

Handling Errors and Special Conditions

 TPL Return Codes SYNAD or

LERAD
Exit Routine
Entered

Register 15 Register 0 TPLACTCD TPLERRCD

TRFATLAM X'10' Diagnostic code No information
stored

No information stored No

TRFATLAP X'14' Diagnostic code No information
stored

No information stored No

Conditional Completion Codes

When a TPL-based request completes successfully (the general return code is
zero), a conditional completion code may be returned in register zero.

■ If the value returned in register zero is zero, then the request is said to have
completed normally

■ If the value returned in register zero is non-zero, then the request is said to
have completed conditionally, and the value in register zero is the
conditional completion code

The purpose of the conditional completion code is to notify the application
program of the occurrence of some condition that although it did not prevent the
successful completion of the requested operation, may need to be acted on by the
application program. More than one condition can be present at one time, and as
such, each bit in the conditional completion code represents a different
condition.

The following conditions are recognized by the API.

Name Dec Hex Meaning

TCOKAY 0 X’00’ Normal (unconditional) completion.

TCVERIFY 128 X’80’ One or more protocol options did not verify.

TCNEGOT 64 X’40’ Protocol options negotiated to inferior value.

TCTRUNC 32 X’20’ Data truncated to fit in storage area.

TCSTOP 8 X’08’ Subsystem shutdown in progress.

Program Synchronization and Control 3–49

Handling Errors and Special Conditions

When a TPL-based request completes successfully, the recovery action code
stored in the TPL (TPLACTCD) is set to zero (X'00'), and the conditional
completion code is stored in the specific error code field (TPLERRCD). Assertion
of a conditional completion code does not cause the SYNAD or LERAD exit
routine to be entered.

Recovery Action Codes

Recovery action codes serve the following purposes:

■ They are used by the API to determine whether the SYNAD or LERAD exit
routine should be entered following the unsuccessful completion of a request

■ They provide the exit routine a way to distinguish a class of errors and to
dispatch the appropriate processing routine.

The following recovery actions codes are used by the API.

Name Dec Hex Meaning

TAOKAY 0 X’00’ Request completed successfully.

TAEXCPTN 4 X’04’ Failed due to exceptional condition.

TAINTEG 8 X’08’ Connection or data integrity error.

TAENVIRO 12 X’0C’ Environmental error.

TAFORMAT 16 X’10’ Format or specification error.

TAPROCED 20 X’14’ Sequence or procedural error.

TATPLERR 24 X’18’ Logic error with no TPL return code.

Recovery Action
Code Classification
for Errors

Errors are classified by recovery action code as follows.

Errors with the following recovery action codes are classified as physical errors
or exceptional conditions that cause the SYNAD exit routing to be entered (if
one is specified):

■ TAXCPTN

■ TAINTEG

■ TAENVIRO

Errors with the following recovery action codes are classified as program logic
errors that cause the LERAD exit routine to be entered:

■ TAFORMAT

■ TAPROCED

■ TATPLERR

3–50 Assembler API Concepts

Handling Errors and Special Conditions

TAOKAY is the recovery action code used for successful completion.

Normally, the recovery action code is stored in the TPLACTCD field of the TPL
in addition to being returned in register zero. However, the TATPLERR recovery
action code is a special case. For all errors of this class, the TPL is busy with
another request and cannot be modified. Therefore, the recovery action code and
the accompanying specific error and diagnostic codes are not stored in the TPL.

Specific Error Codes

The specific error code is used to indicate a particular error within the class of
errors defined by the recovery action code. The specific error code is only
returned in the TPLERRCD field of the TPL. Since return codes are not stored for
the TATPLERR recovery action code, specific error codes in this class can never
be returned to the application program.

Specific error codes have been carefully selected to have generic applicability
across a variety of transport providers.

Example TEPROTO is the symbolic name of the specific error code used to indicate a
protocol error. This code does not indicate a specific protocol error, but only that
a protocol error occurred. Therefore, application programs that make use of the
specific error code can expect a degree of commonality from one transport
provider to another.

Specific error codes used by the API are documented in Unicenter TCPaccess
Communications Server Unprefixed Messages and Codes.

Program Synchronization and Control 3–51

Handling Errors and Special Conditions

Diagnostic Codes

The diagnostic code is used to indicate a particular instance of a specific error
code.

Diagnostic codes are provider-dependent, and an application program that is
intended to be portable between transport providers should not analyze this
code. However, it is a good idea to include the diagnostic code with any
information recorded for diagnostic purposes.

The diagnostic code is four bytes in length. The first two bytes are the module
ID, followed by a two-byte serial number that identifies a particular error within
the module:

Module ID Instance ID

2 Bytes2 Bytes

The four-byte diagnostic code appears in API traces and is recorded in the
extended diagnostic area if TPL extensions are used.

When returned to the standard TPL, the diagnostic code is uniquely mapped to a
two-byte code.

The first byte identifies the module that encountered the error. The second byte
identifies a specific error instance identifier within the module.

Diagnostic codes that can accompany specific error codes are listed in Unicenter
TCPaccess Communications Server Unprefixed Messages and Codes.

AOPEN and ACLOSE Errors

After issuing the AOPEN or ACLOSE macro instruction, register 15 should be
tested.

■ If the return code in register 15 is zero, the APCB was opened or closed as
requested.

■ If the return code in register 15 is not equal to zero, the APCB was not
properly opened or closed. When this occurs, register zero contains an error
code.

This error code can also be returned in the APCBERRC field of the APCB.
Whether or not the error code is stored depends on the value returned in register
15. If the error code is stored, it is accompanied by a diagnostic code stored in the
APCBDGNC field.

3–52 Assembler API Concepts

Application Program Organization

The API uses the following AOPEN and ACLOSE return codes.

Dec Hex Meaning

0 X’00’ The request operation was successful.

4 X’04’ No operation was performed (no error code stored).

8 X’08’ A temporary failure occurred.

12 X’0C’ A permanent failure occurred.

16 X’10’ A fatal error occurred (no error code stored).

AOPEN and ACLOSE errors must be handled in the mainline program (that is,
the SYNAD or LERAD exit routine is not entered when such errors occur).

■ If the failure was temporary, the request can be retried after some delay

■ If the failure was permanent, the request should not be retried unless the
permanent error flag set in the APCB is cleared before reissuing the request

AOPEN and ACLOSE error codes are documented in Unicenter TCPaccess
Communications Server Unprefixed Messages and Codes.

Application Program Organization
The API provides many facilities for program control and synchronization. Most
of these facilities are optional and are not required to be used by every
application program. The facilities that are used by a particular program
depends in large part on the environment in which it operates and how it is
organized.

Types of
Organization

An application program is generally organized along one of these lines:

■ Using TPL completion ECBs as the primary mechanism for synchronization
and control.

 All TPL-based requests should be executed from the mainline program and
little use (if any) should be made of exit routines except for error recovery.
An application program organized in this manner issues a service request in
anticipation of some event, and then waits for it to complete.

 This is useful when a TRECV macro instruction is executed without knowing
whether data was available, and at some point, the program must wait for
completion.

Program Synchronization and Control 3–53

Multitasking Operation Rules

■ Organizing the application program to respond to events instead of
anticipating their occurrence.

 An application program organized in this manner primarily uses
asynchronous exit routines or protocol event ECBs.

 This happens when a DATA exit routine is defined, and when data arrives
the exit routine issues the TRECV macro instruction.

An application program can also combine both approaches. However, when
using ECB posting with asynchronous exits, the program must be prepared to
handle certain anomalies that may occur. In particular, the time sequence of
events may appear out of order.

Example Assume a DATA exit was specified for an endpoint operating in connection
mode. Further, assume that a TCONNECT macro instruction completed
successfully, and a TCONFIRM macro instruction was issued that specifies ECB
posting. When the connect confirmation arrives, the TCONFIRM request
completes and the ECB is posted. However, if data arrives at the endpoint before
the application program’s address space is dispatched, the DATA exit routine
may be entered before the program detects that the TCONFIRM request
completed. The application program must be able to handle this situation, or
should be coded to avoid it.

Multitasking Operation Rules
The API is designed to support both multitasking operation and multiple
address space operation.

These rules apply to using the API in a multitasking environment:

■ The task that issues the ACLOSE macro instruction must be the task that
opened the APCB.

■ All asynchronous exit routines are entered from an IRB on the TCB of the
task that opened the APCB to which the exit list is linked.

■ All asynchronous exit routines are entered from an IRB on the TCB of the
task that opened the endpoint to which the exit list is linked.

■ All asynchronous exit routines associated with a given task are executed at
the same priority. That is, asynchronous exit routines are serialized at the
task level.

■ If desired, other tasks can issue TPL-based requests (other than TOPEN and
TCLOSE) for any given endpoint. However, exits continue to execute on the
owning task, as mentioned in the previous two rules.

3–54 Assembler API Concepts

Multiple Address Spaces

■ Exits associated with an endpoint that is passed with a TCLOSE
OPTCD=PASS macro are driven in the task that issues the corresponding
TOPEN OPTCD=OLD when the TOPEN completes.

■ A task that relinquishes control of an endpoint by issuing a TCLOSE macro
instruction (with OPTCD=PASS) is treated as if it had never opened the
endpoint at all.

■ The task that receives control of an endpoint by issuing a TOPEN macro
instruction (with OPTCD=OLD) becomes the owning task, and is treated as
if it originally opened the endpoint.

Multiple Address Spaces
The API supports operation across multiple address spaces. In an address space,
the rules for multitasking operation, described in the Unicenter TCPaccess
Communications Server Assembler API Macro Reference apply.

An additional facility is provided to pass sessions from one address space to
another. Using this facility involves establishing a session up to some state (with
no active data transfer in progress) and issuing a TCLOSE macro with
OPTCD=PASS. Optionally, the user can specify which address space, by ASCB
address, can receive the session. The receiving program issues a TOPEN macro
specifying the original endpoint ID, the OPTCD=OLD, the ASCB address of the
address space that is passing the endpoint, and optionally the TCB address of the
task that is passing the endpoint. The endpoint does not need to be in common
storage.

Do not assume that the endpoint ID remains the same after the TOPEN
OPTCD=OLD is issued. As in any TOPEN invocation, the endpoint ID token
should be copied on completion of the TOPEN and used in all subsequent
requests that refer to the endpoint.

The application can also specify ASCB=ANY on the TCLOSE OPTCD=PASS
macro to indicate that the endpoint is eligible for passing to any address space
that issues a matching TOPEN OPTCD=OLD request..

Initialization of the second address space, passing the required information, and
synchronization of the two address spaces is up to the user.

Program Synchronization and Control 3–55

24-Bit and 31-Bit Addressing

24-Bit and 31-Bit Addressing
The API supports operation in either 24-bit addressing mode or 31-bit
addressing mode. The addressing mode in effect at the time the AOPEN macro is
issued determines the addressing mode for all further operations.

Exits also run in this addressing mode. Interface routines are placed in 24-bit
memory in order to accept calls in either mode. Control blocks are allocated in
the addressing mode in effect when the AOPEN macro is issued.

3–56 Assembler API Concepts

Appendix

A Endpoint State Transitions

This appendix lists and describes all of the state transitions that may occur at an
endpoint.

The following topics are discussed:

■ Defined Endpoint States—Briefly describes the defined endpoint states

■ The State Transition Tables—Includes array tables that show how endpoint
and current state are used to determine new endpoint states

Defined Endpoint States
A machine-readable endpoint state transition table is interpreted by API routines
to manage a state variable maintained for each endpoint. This state variable is
used to control the execution sequence of API service functions. The state
variable can be read with the TSTATE function, and is returned as part of a state
word defined by the TSW DSECT.

These nine endpoint states are defined:

TSCLOSED Closed.

TSOPENED Opened.

TSDSABLD Disabled.

TSENABLD Enabled.

TSINCONN Connect indication pending.

TSOUCONN Connect in progress (awaiting confirm indication).

TSCONNCT Connected (or associated).

TSINRLSE Release indication pending.

TSOURLSE Release in progress (awaiting release indication).

Endpoint State Transitions A–1

The State Transition Tables

The State Transition Tables
The tables in this section list the nine state transitions that may occur at an
endpoint. Each state transition table is organized as an array where each row
represents an event and each column represents one of the possible endpoint
states. Given some event and the current state of the endpoint, the array element
at the intersection of the row and column is the new state of the endpoint. If the
array element is null (blank), the event is invalid for the current state.

Each table includes the same event state information in the Event columns, and
three of the nine endpoint states in the Current State columns.

Each event listed in the state table consists of the successful completion of a
particular API service function, and various conditions that were in effect during
its execution.

■ Conditions listed in uppercase represent parameters or option codes
provided with the service request.

■ Conditions listed in lowercase apply to internal variables maintained by the
API.

■ Each event also lists the service type that must be in effect for the endpoint.

These are the variables:

qlstn The negotiated size of the connect indication queue specified by the

QLSTN parameter in a successful TBIND request.

count The number of pending connect indications.

Note: These notes correspond to the numbers (for example, 3) in the tables:

1. Connectionless Transport Service (CLTS) service mode is valid only when
using associations. TYPE=(CLTS,ASSOC) must have been specified when the
endpoint was opened.

2. Connection-Oriented Transport Service (COTS) service mode is valid only
when orderly release is supported by the transport provider.
TYPE=(COTS,ORDREL) must have been specified when the endpoint was
opened.

3. Control of the endpoint is passed to another task or address space. On
completion of TOPEN, the state of the new endpoint is the same as the state
of the old endpoint before it was closed.

4. This event represents the state transition for the endpoint to which a
connection is accepted when the endpoint is different from the one receiving
the connect indication.

A–2 Assembler API Concepts

The State Transition Tables

5. The number of pending connect indications is incremented by one.

6. The number of pending connect indications is decremented by one.

Endpoint States for TSCLOSED, TSOPENED, and TSDSABLED

The following table lists the endpoint states for the TSCLOSED, TSOPENED, and
TSDSABLED states.

Event Current
State:

Function Conditions Service Type TSCLOSED TSOPENED TSDSABLD

TACCEPT count=1, NEWEP=EP COTS, CLTS,

 count=1, NEWEP=EP COTS, CLTS,

 count>1, NEWEP=EP COTS, CLTS,

 COTS, CLTS, TSCONNCT

TADDR OPTCD=LOCAL COTS, CLTS TSDSABLD

 OPTCD=REMOTE COTS, CLTS

TBIND QLSTN=0 COTS, CLTS TSDSABLD

 QLSTN>0 COTS, CLTS TSENABLD TSENABLD

TCLEAR qlstn=0 COTS, CLTS,

 qlstn>0, count=0 COTS, CLTS,

 qlstn>0, count=1 COTS, CLTS,

 qlstn>0, count>1 COTS, CLTS,

TCLOSE OPTCD=DELETE COTS, CLTS TSCLOSED TSCLOSED

 OPTCD=PASS COTS, CLTS 3 3

TCONFIRM COTS, CLTS,

TCONNECT COTS, CLTS, TSOUCONN

TDISCONN qlstn=0 COTS, CLTS,

 qlstn>0 COTS, CLTS,

TINFO COTS, CLTS TSOPENED TSDSABLD

TLISTEN count<qlstn COTS, CLTS,

TOPEN OPTCD=NEW COTS, CLTS TSOPENED

 OPTCD=OLD COTS, CLTS 3

Endpoint State Transitions A–3

The State Transition Tables

Event Current
State:

Function Conditions Service Type TSCLOSED TSOPENED TSDSABLD

TOPTION COTS, CLTS TSOPENED TSDSABLD

TRECV COTS, CLTS,

TRECVERR CLTS TSDSABLD

TRECVFR CLTS TSDSABLD

TREJECT count=1 COTS, CLTS,

 count>1 COTS, CLTS,

TRELACK qlstn=0 COTS, 2

 qlstn>0 COTS, 2

TRELEASE qlstn=0 COTS, 2

 qlstn>0 COTS, 2

TRETRACT COTS, CLTS,

TSEND COTS, CLTS,

TSENDTO CLTS TSDSABLD

TUNBIND COTS, CLTS TSOPENED

TUSER COTS, CLTS TSOPENED TSDSABLD

A–4 Assembler API Concepts

The State Transition Tables

Endpoint States for TSENABLD, TSINCONN, and TSOUCONN

The following table lists the endpoint states for the TSENABLD, TSINCONN,
and TSOUCONN states.

Event Current
State:

Function Conditions Service Type TSCLOSED TSOPENED TSDSABLD

TACCEPT count=1, NEWEP=EP COTS, CLTS, TSCONNCT, 6

 count=1, NEWEP=EP COTS, CLTS, TSENABLD, 6

 count>1, NEWEP=EP COTS, CLTS, TSINCONN, 6

 4 COTS, CLTS,

TADDR OPTCD=LOCAL COTS, CLTS TSENABLD TSINCONN TSOUCONN

 OPTCD=REMOTE COTS, CLTS

TBIND QLSTN=0 COTS, CLTS

 QLSTN>0 COTS, CLTS

TCLEAR qlstn=0 COTS, CLTS, TSDSABLD

 qlstn>0, count=0 COTS, CLTS,

 qlstn>0, count=1 COTS, CLTS, TSENABLD, 6

 qlstn>0, count>1 COTS, CLTS, TSINCONN, 6

TCLOSE OPTCD=DELETE COTS, CLTS TSCLOSED TSCLOSED TSCLOSED

 OPTCD=PASS COTS, CLTS 3

TCONFIRM COTS, CLTS, TSCONNCT

TCONNECT COTS, CLTS,

TDISCONN qlstn=0 COTS, CLTS, TSDSABLD

 qlstn>0 COTS, CLTS,

TINFO COTS, CLTS TSENABLD TSINCON TSOUCONN

TLISTEN count<qlstn COTS, CLTS, TSINCONN,
5

TSINCONN, 5

TOPEN OPTCD=NEW COTS, CLTS

 OPTCD=OLD COTS, CLTS

TOPTION COTS, CLTS TSENABLD

TRECV COTS, CLTS,

Endpoint State Transitions A–5

The State Transition Tables

Event Current
State:

Function Conditions Service Type TSCLOSED TSOPENED TSDSABLD

TRECVERR CLTS

TRECVFR CLTS

TREJECT count=1 COTS, CLTS, TSENABLD, 6

 count>1 COTS, CLTS, TSINCONN, 6

TRELACK qlstn=0 COTS, 2

 qlstn>0 COTS, 2

TRELEASE qlstn=0 COTS, 2

 qlstn>0 COTS, 2

TRETRACT COTS, CLTS, TSENABLD TSINCONN

TSEND COTS, CLTS,

TSENDTO CLTS

TUNBIND COTS, CLTS TSOPENED

TUSER COTS, CLTS TSENABLD

A–6 Assembler API Concepts

The State Transition Tables

Endpoint States for TSCONNCT, TSINRLSE, and TSOURLSE

This table lists the endpoint states for the TSCONNCT, TSINRLSE, and
TSOURLSE states.

Event Current State:

Function Conditions Service
Type

TSCONNCT TSINRLSE TSOURLSE

TACCEPT count=1, NEWEP=EP COTS,
CLTS,

 count=1, NEWEP=EP COTS,
CLTS,

 count>1, NEWEP=EP COTS,
CLTS,

 4 COTS,
CLTS,

TADDR OPTCD=LOCAL COTS,
CLTS

TSCONNCT TSINRLSE TSOURLSE

 OPTCD=REMOTE COTS,
CLTS

TSCONNCT TSINRLSE TSOURLSE

TBIND QLSTN=0 COTS,
CLTS

 QLSTN>0 COTS,
CLTS

TCLEAR qlstn=0 COTS,
CLTS,

TSDSABLD TSDSABLD TSDSABLD

 qlstn>0, count=0 COTS,
CLTS,

TSENABLD TSENABLD TSENABLD

 qlstn>0, count=1 COTS,
CLTS,

 qlstn>0, count>1 COTS,
CLTS,

TCLOSE OPTCD=DELETE COTS,
CLTS

TSCLOSED TSCLOSED TSCLOSED

 OPTCD=PASS COTS,
CLTS

3

Endpoint State Transitions A–7

TCONFIRM COTS,
CLTS,

The State Transition Tables

Event Current State:

Function Conditions Service
Type

TSCONNCT TSINRLSE TSOURLSE

A–8 Assembler API Concepts

CLTS,

TSENDTO CLTS

TCONNECT COTS,
CLTS,

TDISCONN qlstn=0 COTS,
CLTS,

TSDSABLD TSDSABLD TSDSABLD

 qlstn>0 COTS,
CLTS,

TSENABLD TSENABLD TSENABLD

TINFO COTS,
CLTS

TSCONNCT TSINRLSE TSOURLSE

TLISTEN count<qlstn COTS,
CLTS,

TOPEN OPTCD=NEW COTS,
CLTS

 OPTCD=OLD COTS,
CLTS

TOPTION COTS,
CLTS

TSCONNCT

TRECV COTS,
CLTS,

TSCONNCT TSOURLSE

TRECVERR CLTS

TRECVFR CLTS

TREJECT count=1 COTS,
CLTS,

 count>1 COTS,
CLTS,

TRELACK qlstn=0 COTS, 2 TSINRLSE TSDSABLD

 qlstn>0 COTS, 2 TSINRLSE TSENABLD

TRELEASE qlstn=0 COTS, 2 TSOURLSE TSDSABLD

 qlstn>0 COTS, 2 TSOURLSE TSENABLD

TRETRACT COTS,
CLTS,

TSEND COTS, TSCONNCT TSINRLSE

The State Transition Tables

Event Current State:

Function Conditions Service
Type

TSCONNCT TSINRLSE TSOURLSE

TUNBIND COTS,
CLTS

TUSER COTS,
CLTS

TSCONNCT

Endpoint State Transitions A–9

Appendix

B Time-Sequence Diagrams

This appendix contains sequence diagrams showing the relationship between the
API service requests issued at an endpoint and service primitives issued to or by
the transport provider.

It covers Diagrams including the time-sequence diagrams.

Each time-sequence diagram shows a local transport user (Local TU) issuing
requests and responding to events at the local transport interface (API), and a
transport provider (TP) receiving request and response primitives, and issuing
indication and confirm primitives.

Diagram Labeling
The transport provider is shown as a single entity, although, in actuality, there is
a local and remote entity between which the protocol exchanges take place. Note
that the transport interface between the remote transport provider and the peer
transport user (Remote TU) is not shown.

The vertical lines delineating the transport provider represent the Transport
Service Access Points (TSAPs) for the local and remote transport user. The
vertical lines delineating the transport interface represent the endpoint from the
perspective of the transport user and transport provider.

All interactions between the local transport user and the API are shown in terms
of the service functions executed, and their normal or abnormal completions:

■ The invocation of a function is labeled a request

■ Its successful completion is simply labeled a completion

■ An abnormal completion is indicated by error

■ An asynchronous event that causes an exit routine to be scheduled is labeled
an indication

Time-Sequence Diagrams B–1

Diagram Labeling

Synchronous and Asynchronous Modes

Some sequences are shown in synchronous and asynchronous mode:

■ Synchronous mode applies when service requests are issued synchronous
with normal application program processing. Generally, the application
program is running under control of a PRB.

■ Asynchronous mode applies when service requests are issued asynchronous
with normal processing. This mode requires use of exit routines, and
requests are often issued under control of the IRB that runs the exit routine.

In synchronous mode, the time relationship between the occurrence of an event
(for example, the arrival of some data) and invocation of the corresponding
service function (for example, TRECV) is unimportant. However, in
asynchronous mode, the service function is generally issued in response to the
event.

Completion and Error Events

Completion and error events occur when a TCHECK control function is
executed. The TCHECK function can be executed by the API (OPTCD=SYNC) or
the transport user (OPTCD=ASYN).

B–2 Assembler API Concepts

Diagrams

Diagrams
This section icontains the time-sequence diagrams.

Local Endpoint Management (Initialization)

LOCAL TU API TP REMOTE TU
TOPEN
request
TOPEN

completion

TINFO
request
TINFO

completion
TBIND
request
TBIND

completion
TADDR
request
TADDR

completion

TOPTION
request

TOPTION
completion
TUSER
request
TUSER

completion

Time-Sequence Diagrams B–3

Diagrams

Client Connect Sequence (Accepted)

Synchronous Mode

Asynchronous Mode

TCONNECT
request

TCONNECT
completion

TCONFIRM
request

TCONFIRM
completion

TCONNECT
request

API TPLOCAL TU REMOTE TU

TCONNECT
indication

TCONNECT
response

TCONNECT
confirm

TCONNECT
request

TCONNECT
completion

TCONFIRM
indication

TCONNECT
request

API TPLOCAL TU REMOTE TU

TCONNECT
indication

TCONNECT
response

TCONNECT

confirm

TCONFIRM
request

TCONFIRM
completion

B–4 Assembler API Concepts

Diagrams

Client Connect Sequence (Rejected)

Synchronous Mode

TCONNECT
request

TCONNECT
completion

TCONFIRM
error

TCONNECT
request

API TPLOCAL TU REMOTE TU

TCONNECT
indication

TDISCONN
request

TCONNECT
confirm

TCLEAR
request

TCLEAR
completion

TCONFIRM
request

Asynchronous Mode

TCONNECT
request

TCONNECT
completion

DISCONNECT
indication

TCONNECT
request

API TPLOCAL TU REMOTE TU

TCONNECT
indication

TDISCONN
request

TDISCONN
indication

TCLEAR
request

TCLEAR
completion

Time-Sequence Diagrams B–5

Diagrams

Server Connect Sequence (Accepted)

Synchronous Mode

TLISTEN
request

TLISTEN
completion

TACCEPT
request

TACCEPT
completion

TCONNECT
indication

API TPLOCAL TU REMOTE TU

TCONNECT
request

TCONNECT
confirm

Asynchronous Mode

TLISTEN
request

TLISTEN
completion

TACCEPT
request

TACCEPT
completion

TCONNECT
indication

API TPLOCAL TU REMOTE TU

TCONNECT
request

TCONNECT
confirm

B–6 Assembler API Concepts

Diagrams

Server Connect Sequence (Rejected)
Synchronous Mode

TLISTEN
request

TLISTEN
completion

TREJECT
request

TREJECT
completion

TCONNECT
indication

API TPLOCAL TU REMOTE TU

TCONNECT
request

TDISCONN
indication

TDISCONN
request

TCONNECT
confirm

Asynchronous Mode

TLISTEN
request

TLISTEN
completion

CONNECT
indication

TREJECT
request

TREJECT
completion

TCONNECT
indication

API TPLOCAL TU REMOTE TU

TCONNECT
request

TDISCONN
indication

TDISCONN
request

TCONNECT
confirm

Time-Sequence Diagrams B–7

Diagrams

COTS Receive Data Sequence

Synchronous Mode

TRECV
request

TRECV
completion

TDATA
indication

API TPLOCAL TU REMOTE TU

TDATA
request

Asynchronous Mode

TDATA
indication

TDATA
indication

API TPLOCAL TU REMOTE TU

TDATA
request

TRECV
request

TRECV
completion

B–8 Assembler API Concepts

Diagrams

COTS Send Data Sequence

TLI Mode

TSEND
request

TSEND
completion

TDATA
request

API TPLOCAL TU REMOTE TU

TDATA
indicationTSEND

completion

Socket Mode

TSEND
request

TDATA
request

API TPLOCAL TU REMOTE TU

TDATA
indication

CLTS Receive Data Sequence
Synchronous Mode

TRECVFR
request

TRECVFR
completion

TUNITDATA
indication

API TPLOCAL TU REMOTE TU

TUNITDATA
request

Time-Sequence Diagrams B–9

Diagrams

Asynchronous Mode

DATA
indication

TUNITDATA
indication

API TPLOCAL TU REMOTE TU

TUNITDATA
request

TRECVFR
request

TRECVFR
completion

CLTS Send Data Sequence

TSENDTO
request

TSENDTO
completion

TUNITDATA
request

API TPLOCAL TU REMOTE TU

TUNITDATA
indication

B–10 Assembler API Concepts

Diagrams

CLTS Datagram Error Sequence

Synchronous Mode

TSENDTO
request

TSENDTO
completion

TRECVFR
request

TRECVFR
error

TUNITDATA
request

API TPLOCAL TU REMOTE TU

TUNITDATA
indication

TRECVFR
request

TRECVFR
completion

Asynchronous Mode

TSENDTO
request

TSENDTO
completion

DATAGRAM

indication

TUNITDATA
request

API TPLOCAL TU REMOTE TU

TUNITDATA
indication

TRECVERR
request

TRECVERR
completion

ERROR

Time-Sequence Diagrams B–11

Diagrams

Orderly Release Sequence

Receive Path—Synchronous Mode

TRECV
request

TRECV
error

TRELACK
request

TRELACK
completion

TRELEASE
indication

API TPLOCAL TU REMOTE TU

TRELEASE
request

Receive Path—Asynchronous Mode

TRELACK
request

TRELACK
completion

TRELEASE
indication

TRELEASE
indication

API TPLOCAL TU REMOTE TU

TRELEASE
request

B–12 Assembler API Concepts

Diagrams

No Receive Data—Synchronous Mode

TRELACK
request

TRELACK
completion

TRELEASE
indication

API TPLOCAL TU REMOTE TU

TRELEASE
request

Send Path

TRELEASE
indication

TRELEASE
request

TSEND
request

TSEND
completion

TRELEASE
completion

TDATA
request

API TPLOCAL TU REMOTE TU

TDATA
indication

TRELEASE
request

TDATA
confirm

Time-Sequence Diagrams B–13

Diagrams

Abortive Disconnect Sequence

Locally Initiated

TDISCONN
request

TDISCONN
completion

TDISCONN
request

API TPLOCAL TU REMOTE TU

TDISCONN
indication

Remotely Initiated

TDISCONN
indication

TCLEAR
request

TDISCONN
indication

API TPLOCAL TU REMOTE TU

TDISCONN
request

TCLEAR
completion

B–14 Assembler API Concepts

Diagrams

Simultaneous Disconnects
Transparent

TDISCONN
request

TDISCONN
completion

TDISCONN
request

API TPLOCAL TU REMOTE TU

TDISCONN
request

Non-Transparent

TDISCONN
request

TDISCONN
error

TCLEAR
request

TCLEAR
completion

TDISCONN
indication

API TPLOCAL TU REMOTE TU

TDISCONN
request

Time-Sequence Diagrams B–15

Diagrams

Local Endpoint Management (Termination)

LOCAL TU API TP REMOTE TU

TUNBIND
request

TUNBIND
completion

TCLOSE
request

TCLOSE
completion

B–16 Assembler API Concepts

Using TCP and UDP Services C–1

codes, and the definition of expedited data. A summary of how protocol events
and actions relate to API events and actions is also included.

Appendix

C Using TCP and UDP Services

This appendix describes API considerations when using TCP or UDP as the
underlying transport provider.

The following topics are discussed:

■ Protocol Address—Describes the protocol address structure, transport layer
address/port numbers, and network layer addressing/IP address

■ Expedited Data —Describes how Unicenter TCPaccess maps TCP urgent data
into API expedited data, including sending and receiving expedited data

■ Disconnect Reason Codes —Lists the disconnect reason codes generated
when a disconnect indicated is presented to the transport user application
program

■ API-Initiated Protocol Actions—Describes the actions performed by the TCP
transport provider on behalf of the respective transport user API requests

■ Protocol Events Resulting In API Activity—Describes the protocol events
that result in API activity

Protocol Address
The protocol address structure used by the API consists of a domain type
followed by a protocol-dependent protocol address. This structure is mapped by
the macro APIDTPA for the assembler API and the tpainet structure within the
header api.h for the basic C library API.

The domain type portion of the protocol address used for TCP and UDP is INET
(for Internet). The protocol-dependent portion of the INET domain type is the
concatenation of the 16-bit TCP or UDP port number and the 32-bit IP network
address.

Protocol dependencies apply to the structure of the Internet protocol address, the
use of options, the use of API parameters, protocol-dependent disconnect reason

Protocol Address

C–2 Assembler API Concepts

4096 or greater conflicts with dynamic port assignment.

Transport Layer Address—Port Numbers

In most applications using the client/server model, port numbers for server
programs are defined by the application, and port numbers for client programs
are determined by, or requested from, the transport provider prior to the
sending of datagrams or request for connection.

Server programs typically use what are referred to as well-known ports. A well-
known port is a specific port number that is always the same no matter when,
where, or how the server program executes. This mechanism lets client programs
reliably request connections to the desired server application independent of
other factors. Use of well-known ports by the server and dynamic assignment of
client port numbers also lend themselves to the one-to-many relationship that
client/server applications use.

When selecting a port number for a server application, developers must have
knowledge of the well-known port numbers used by other applications on their
networks as well as official port numbers that are reserved for specific
applications on an Internet-wide basis. Official well-known port numbers are
used by common applications such as File Transfer Protocol (FTP) and Virtual
Terminal (TELNET). These port numbers are in the range of 1-255 and are listed
in the Assigned Numbers RFC.

If an application protocol having an officially assigned port is being
implemented, the respective port numbers should be specified in the
application’s address structures. Some existing applications use well-known port
numbers that are unofficially assigned. Where application-to-port number
mappings are defined is implementation-dependent (for example,
file/etc/services on UNIX-based systems; SERVICE statements in APPCFGxx for
Unicenter TCPaccess).

Like most implementations of TCP and UDP, Unicenter TCPaccess divides the
port number space between well-known (server) and client port numbers. In
Unicenter TCPaccess, ports used as server ports are defined by the PORTUSE
keyword parameter on the TCP and UDP parameter statements. The default
range for PORTUSE is 1-4095. Ports used for clients ports are specified on the
PORTASGN keyword parameter of the TCP and UDP parameter statements. The
default port range for PORTASGN is 4096-65535.

Note: These are general conventions and exceptions are possible.

Local port numbers for TCP and UDP can be selected by the API application
program by supplying the desired port number in the protocol address structure
referenced by a TBIND request specifying OPTCD=USE. Local port numbers
selected by the application must be less than 4096. Specifying local port numbers

Protocol Address

Applications request local port number assignment by issuing the TBIND
request OPTCD=ASSIGN parameter. If an address buffer was supplied on the
TBIND request, the transport provider returns the assigned local port number in
the address structure.

An application that is requesting a TCP connection, UDP association, or UDP
sending datagrams to a remote application must provide the remote port
number that is used by that application. For TCP connections and UDP
associations, this information is provided in the address structure referenced by
the TCONNECT request. With UDP datagrams, the remote port is supplied with
the TSENDTO request.

Server applications using the API normally do not need to know client port
numbers. However, the transport provider passes the remote protocol address to
the application on completion of a TLISTEN request, if an address buffer is
provided. The remote protocol address is also available at any time after the
connection or association is established via the TADDR OPTCD=REMOTE
function.

Network Layer Addressing—IP Address

Following the port number in the address structure is the IP network address of
the host containing the specified port. The application program normally is not
concerned with the local IP address. In the API, this information must be left as
zero or truncated in the address structure when TBIND is issued. This is because
it is possible for Unicenter TCPaccess to have network interfaces to multiple
networks and thus have multiple local IP addresses. It is the responsibility of the
routing algorithms in Unicenter TCPaccess to determine which local network
interface and associated local IP address are used to transmit data. The selected
local IP address is available to the application after the connection is established
by issuing a TADDR OPTCD=LOCAL API request.

A remote IP address must be provided when connecting or sending datagrams
to a remote computer. The address structure supplied on a TCONNECT request
must contain the remote IP address when establishing a TCP connection or UDP
association. When sending UDP datagrams without the use of a UDP
association, an address structure containing the remote IP address is supplied
with each datagram on a TSENDTO request.

The API applications operating as servers do not normally require the remote IP
address. However, it can be obtained by providing an address structure with the
TLISTEN request. It may also be retrieved while the TCP connection or UDP
association is in effect with a TADDR OPTCD=REMOTE API request.

Using TCP and UDP Services C–3

An application using UDP without associations must supply an address buffer
on the TRECVFR request if the remote source IP address is desired.

Expedited Data

Expedited Data
Unicenter TCPaccess maps TCP urgent data into API expedited data. There is no
corresponding mechanism in the UDP protocol and therefore expedited data is
not supported by the API when using UDP.

Sending Expedited Data

When an application issues a TSEND OPTCD=EXPEDITE request, the transport
provider sets the TCP header urgent flag and sets the TCP header urgent pointer
to the TCP sequence number offset corresponding to the TCP sequence number
of the data byte following the last byte of TSEND OPTCD=EXPEDITE data.
These are set in each TCP segment until all of the expedited/urgent data is
transmitted.

Receiving Expedited Data

When urgent TCP data arrives from the network, Unicenter TCPaccess notifies
the transport user of expedited data. This is accomplished by setting the
EXPEDITE bit in the TPL of any outstanding TRECV request. If there are no
outstanding TRECV requests when urgent TCP data arrives, and the transport
user has enabled an expedited data indication exit routine, the transport
provider drives that exit. In either case, all subsequent TRECV requests complete
with the EXPEDITE bit set until all of the urgent TCP data is received by the
transport user. The expedited data indication exit is also disabled until all of the
expedited data is received by the transport user.

A TRECV request that receives all remaining TCP urgent data receives only TCP
urgent data, even if there is space for additional data in the receive buffer and
more non-urgent TCP data has arrived at the transport provider.

C–4 Assembler API Concepts

Disconnect Reason Codes

Disconnect Reason Codes
When a disconnect indication is presented to the transport user application
program, the program can determine the reason for the disconnect indication
(and clear the indication) by issuing a TCLEAR request.

Symbolic
Representations and
Descriptions

The symbolic representations and descriptions of the disconnect reason codes
are listed in the following table. The symbolic disconnect reason codes are
mapped into numeric codes by the APIDTPL macro with the DOMAIN=INET
parameter.

TDTRANTO Excessive unacknowledged retransmissions of TCP data caused

the local transport provider to consider the TCP connection
disconnected.
This condition is sometimes referred to as retransmission time-
out.

TDHOSTUN An ICMP host unreachable message was received.
This may be due to a routing configuration problem or a failure
of some network component necessary to reach the desired
destination.

TDPORTUN An ICMP port unreachable message was received from the
remote host.
The desired port is either inactive or unsupported.

TDRABORT A TCP segment was received with the RST (reset) bit on in the
TCP header.
This may be the result of the remote TCP detecting a fatal error
in the TCP connection or may have been initiated by the
application that is using TCP.

TDLNIDWN The local network interface necessary to reach the remote host is
inactive.

TDPROTUN An ICMP protocol unreachable message was received from the
remote host.
TCP is inactive or unsupported on the desired destination.

TDACPRR The connection was terminated due to an unrecoverable error
within some component of the ACP.

TDAPIRR The connection was terminated due to an unrecoverable error
within some component of the API.

TDNETUN An ICMP net unreachable message was received.

TDNOFRAG An ICMP fragmentation needed and DF set message was recieved.

Using TCP and UDP Services C–5

TDSRFAIL An ICMP source route failed message was received.

API-Initiated Protocol Actions

API-Initiated Protocol Actions
This section briefly describes the actions performed by the TCP transport
provider on behalf of the respective transport user API requests. Only the API
requests that cause some TCP-defined protocol activity are listed.

The following requests and protocol actions are not included:

■ API requests that are processed by the transport provider but do not direct
any action by TCP

■ Protocol actions of UDP, because they reduce to the sending of data and, in
the case of UDP associations, simulation of connection establishment and
termination

Macros and
Associated
Protocol Actions

The following table lists the macros and the associated protocol actions.

Macro Protocol Action

TCONNECT Send initial SYN.

TDISCONN Send TCP RST.

TRECV Increase the available receive window space.

TREJECT Send TCP RST.

TRELEASE Send TCP FIN.

TSEND Make data available for packetization; cause immediate
transmission with PUSH bit set if OPTCD=NOMORE was in
effect.
TSEND requests are completed when all of the data sent is
acknowledged by the remote TCP.

C–6 Assembler API Concepts

Protocol Events Resulting In API Activity

Protocol Events Resulting In API Activity
This section lists the protocol events that result in API activity.

Initial SYN Arrives (TCP)

If there is a TLISTEN pending completion within the provider, it is completed. If
there was no pending TLISTEN, but the transport user provided a connect
indication exit, the exit is driven unless the exit was previously driven and the
transport user had not issued TLISTENs for all of the outstanding connect
indications.

SYN/ACK Arrives in Response to a Previously Sent Initial SYN(TCP)

If there is a TCONFIRM pending completion within the provider, it is
completed. If there was no pending TCONFIRM, but the transport user provided
a connect confirmation exit, the exit is driven.

Data Arrives (TCP/UDP)

If there are any pending TRECVs or TRECVFRs awaiting the arrival of data,
completion occurs until there is no more data or no more requests. If there were
no pending TRECVs or TRECVFRs, and the transport user provided a data
indication exit, that exit is driven. If UDP associations are in use, the first
datagram to arrive is also considered a connect indication and is processed in the
same manner as the arrival of an initial TCP SYN.

Acknowledgment for Sent Data Arrives (TCP)

The associated pending TSEND requests are completed. If the endpoint is
operating in socket mode, the Send Window Open event is raised if the window
was previously closed and there are no pending TSEND requests.

Urgent Data Arrives (TCP)

If there are no pending TRECVs awaiting data and the transport user provided
an expedited data indication exit, it is driven. The endpoint enters urgent mode.
All TRECV requests complete with the EXPEDITE bit set in the TPL while in
urgent mode.

Using TCP and UDP Services C–7

Protocol Events Resulting In API Activity

ICMP Message Arrives

Any ICMP message that indicates a permanent error causes a disconnect
indication to be generated. The disconnect indication is presented to the
transport user via the completion of pending requests, if any. If not, the
disconnect indication exit is driven, if it exists. Any subsequent connection
termination request (except TCLEAR unless OPTCD=CLEAR was in effect) or
data transfer request completes abnormally until the disconnect indication is
cleared. In any case, the respective disconnect reason code is set within the
endpoint and is available to the transport user via TCLEAR.

A TCP RESET Arrives

A disconnect indication is passed to the transport user and processed according
to the same method that is used when a permanent ICMP error occurs.

A FIN Arrives (TCP)

If there is a TRELACK pending at the endpoint, it can be completed after all
outstanding TRECVs have completed. Any outstanding or subsequently issued
TRECV for which there is no data is completed with a release indication in the
return code. If the release indication is not presented in a TRECV request and the
transport user provided a release indication exit, the exit is driven after all
TRECVs that complete normally (that is, with data) have completed.

C–8 Assembler API Concepts

Appendix

D API Data Sets

This appendix lists the data sets used by the API and describes their usage.

Data Sets
This list describes the data sets used by the API.

MAC Contains all assembler language macro definitions for the API.

Should be included in SYSLIB DD statement for all application
program assembly steps that reference API macro instructions.

H Contains all C language include files used by the API.
Should be included in the SYSLIB DD statement that defines the
location of include files used with the IBM C/370 and SAS/C
compilers.
Note: Required when compiling any application program that
references C or socket library routines.

CILIB Contains the C and socket library routines in load module form.
Should be included in the linkage editor SYSLIB DD statement when
building nonreentrant application programs compiled with the IBM
C/370 compiler.

CSLIB Contains the C and socket library routines in load module form.
Should be included in the linkage editor SYSLIB DD statement when
building nonreentrant application programs compiled with the
SAS/C compiler.

CIROBJ Contains the C and socket library routines in object module form.
Should be included in the SYSLIB DD statement for the pre-link step
when building reentrant application programs compiled with the IBM
C/370 compiler.

API Data Sets D–1

Data Sets

CSROBJ Contains the C and socket library routines in object module form.
Should be included in the SYSLIB DD statement for the pre-link step
when building reentrant application programs compiled with the
SAS/C compiler.

PARM Contains configuration members used to initialize TCPaccess, the
API, and the NDS when these task groups begin execution.
Note: Can be modified during installation to customize the
configuration of the API.

SAMP Contains the sockcfg.c (SOCKCFG) source member that defines
configuration information used by socket library routines.
Note: Can be modified and compiled at installation time to customize
the configuration of the socket library.

D–2 Assembler API Concepts

Appendix

E Sample Assembler Program

This appendix describes the sample assembler program, TTCP, included with
your Unicenter TCPaccess software.

Sample Program
A sample assembler application program is included in the Unicenter TCPaccess
SAMP library. You can print the program, or you can browse or edit it online. If
you plan to use the sample program as a template, you should first copy it so
you do not destroy the source.

The sample program includes the source for the TTCP TSO command processor,
a test program for exercising Unicenter TCPaccess and the API functions. It is
based on the UNIX ttcp programs. Information on its usage is given in the
User Guide.

The program is simple and is extensively commented to assist a prospective API
programmer in designing and coding an application program.

The program consists of these members:

TTCPCP Command processor front end to TTCPR and TTCPT routines.

TTCPMSGS Contains TTCP message definitions.

TTCPR TTCP receiver listens for a connection request and attaches a
processing subtask part of the TTCP receiver operation.

TTCPRST TTCP receiver subtask receives data using overlapped TRECVs
with ECB posting on completion.

TTCPT TTCP transmitter sends data using overlapped TSENDs with
ECB posting on TSEND completion.

Sample Assembler Program E–1

 Index–1

ICMP message arrives, C-8
initial SYN arrives (TCP), C-7
macro parameters, C-6

exit routines, 3-23
coding procedures, 3-24
example, 3-25

 Index

2

24-bit addressing[twenty-four], 3-55

3

31-bit addressing[thirty-one], 3-55

A

abortive disconnect sequence, B-14

access points
binding, 2-6
unbinding, 2-6

ACLOSE macro, 2-25

addresses,binding and unbinding, 2-34

addressing
24-bit, 3-55
31-bit, 3-55

AOPEN macro, 2-24

APCB macro, 2-71

API
acknowledgment for sent data arrives, C-7
concepts and terminology, 2-5
connectionless-mode service, 2-5
connection-mode service, 2-5
data arrives (TCP/UDP), C-7
data sets, D-1
exit routines, 3-18
FIN arrives (TCP), C-8

multitasking, 3-54
protocol

address structure, C-1
domain type, C-1
events, C-7

relationship independence, 2-2
service request modes, 2-3
service requests, 2-3
SYN/ACK arrives, C-7
TCP RESET arrives, C-8
transport service access point, 2-6

API activity, C-7

API, ddress structure, C-1

APIDTPL macro, C-5

API-initiated protocol actions, C-6

application layer protocols
FTP, 1-9
SMTP, 1-9
TELNET, 1-9

Application Program Control Block (APCB), 2-24

application programs
example, 2-25
organization, 2-23, 3-53

ARPANET definition, 1-4

assembler
sample application program, E-1

TTCPMSGS, E-1
sample application program members

TTCPCP, E-1
TTCPR, E-1
TTCPRST, E-1
TTCPT, E-1

ASSOC service, 2-64

asynchronous

Index–2 Assembler API Concepts

confirm primitive, 2-3

connection mode, 1-14

connectionless mode, 1-14

connection release, 2-53
service functions for, 2-60

data transfer phase, 2-8

register information, 3-24
mode, B-2
operation, 3-9

Event Control Block (ECB), 3-10
internal ECB, 3-11
using external ECB, 3-13

B

Berkeley Software Distribution (BSD), 1-4

binds
addresses, 2-34
available address, 2-34
listen queue relationship, 2-36
to well-known address, 2-35

BSD, Berkeley Software Distribution, 1-4

C

calls to synchronous exit routines, 3-20

checking for orderly release, 2-56

client, 2-7

client mode, 2-7

client/server connections, 2-9

close endpoints, 2-29, 2-32

CLTS
data transfer functions, 2-60
datagram error sequence, B-11
overview, 1-24
receive data sequence, B-9
send data sequence, B-10

codes
diagnostic, 3-51
disconnect reason, C-5
general return, 3-48
recovery action, 3-50
register, 3-48
TPL return codes, 3-48

common parameters, 2-13

completion events, B-2

connectionless-mode service, 2-57
local endpoint management, 2-57
states, 2-78
with associations, 2-63

connection-mode service, 2-27
miscellaneous functions, 2-38
phases, 2-27
states, 2-76

Connection-Oriented Transport Service. See COTS., 1-
14

connections
client, 2-7
client/server, 2-9
establishment functions, 2-42
establishment of, 2-27, 2-42, 2-55
initiation of, 2-43
listening for, 2-66
long-term binding, 2-6
release, 2-27
release functions, 2-53
server, 2-7
server mode, 2-8

context for the language environment, 3-46

context related to the transport user, 3-46

COTS
data transfer functions, 2-48
endpoint states, 3-35
endpoints, 2-6
receive data sequence, B-8
send data sequence, B-9
service primitives, 1-15
services

data transfer, 1-14
transport connection establishment, 1-14
transport connection release, 1-14

D

DARPA
addresses, 1-26
datagram service, 1-24
definition, 1-4
Domain Name System (DNS), 1-29
protocol suite, 1-9

data transfer, 2-27, 2-48, 2-60

 Index–3

endpoints
binding to client endpoint, 2-34
binds to well-known address, 2-35

CONFIRM, 3-33
CONNECT, 3-32
DATA, 3-33

datagram
outgoing, 2-61
receiving, 2-62
UPD, C-3

DDN, Defense Data Network, 1-4

declarative macro instructions, 2-70

Defense Data Network (DDN), definition, 1-4

destination transport user, 1-29

diagnostic codes, 3-51

directory service, 1-29

disconnect reason codes, symbolic representation,
C-5

Disconnect Service, 2-11

DNS definition, 1-29

Domain Name System. DNS

domain type
protocol address structure, C-1

DOMAIN=INET parameter, C-5

E

ECB, 3-10
exit routines, 3-11
internal, 3-11

end of transport, 2-50

endpoint states
connected, 3-35
connect-indication-pending, 3-35
connect-in-progress, 3-35
defined, A-1
release-indication-pending, 3-35
release-in-progress, 3-35
RSOURLSE, A-6
summary table, A-1
TSCONNCT, A-6
TSENABLED, A-4
TSINCONN, A-4
TSINRLSE, A-6
TSOUCONN, A-4

endpoint, state variables for, A-1

bound to local transport address, 2-43
changing user IDs, 2-41
closing, 2-32
functions, 2-73
listening, 2-46
management, 2-57
opening and closing, 2-29
opening of, 2-58
passing control of, 2-32, 2-33
specifying user IDs, 2-41
state transitions, 2-75
states, 2-73
termination of, 2-59
TU end of connection, 2-6
unbinding with TUNBIND, 2-36

EOM/NOTEOM option code, 2-50

error
events, B-2
recovery, 2-26

error handling, 3-9
ACLOSE errors, 3-52
AOPEN errors, 3-52
asynchronous, 3-47
diagnostic codes, 3-51
general return codes, 3-48
macro information, 3-47
recovery action codes, 3-50
register codes, 3-48
specific error codes, 3-51
synchronous, 3-47
TPL return codes, 3-48

establishment of
associations, 2-65
connections, 2-42
sessions, 2-23

Ethernet, 1-4

examples
asynchronous exit routine, 3-25
synchronous exit routine, 3-22

executions, fully initialized TPL, 2-69

exit routines, 2-31
APEND, 3-44
asynchronous, 3-23

coding procedures, 3-24
example, 3-25
register information, 3-24

Index–4 Assembler API Concepts

TACCEPT, 2-45
TCHECK, 2-68
TCLEAR, 2-54

macro instructions
ACLOSE, 2-25
AOPEN, 2-24, 3-19
APCB, 2-71

deriving context in, 3-46
DGERR, 3-34
DISCONN, 3-35
LERAD, 3-38, 3-40
parameter list, 3-26
RELEASE, 3-35
scheduling DATA and XDATA, 3-37
specifying exit routines, 3-18
summary, 3-27
SYNAD, 3-38, 3-41
SYNAD/LERAD errors, 3-39
synchronous

calling exit routines, 3-20
coding procedures, 3-21
example, 3-22
register information, 3-20

synchronous error recovery, 3-37
TEXLST, 3-19
TPEND, 3-19, 3-42
TPL, 3-18
transport endpoint exit parameters, 3-26
TXP information, 3-26
using exit routines, 3-27
XDATA, 3-34, 3-36

exits
AOPEN exit lists, 3-19
calling exit routines. See exit routines., 3-20
protocol events, 3-31
TEXLST, 3-18
TOPEN exit lists, 3-19
TPL completion, 3-30

expedited data
receiving, C-4
sending, C-4

F

File Transfer Protocol. FTP

fixed-length parameters, 2-14

FTP, File Transfer Protocol, 1-9

functions
connection establishment, 2-42
connection release, 2-53
COTS data transfer, 2-48
data transfer service, 2-60
miscellaneous, 2-38

TCONNECT, 2-43
TDISCONN, 2-54, 2-55
TERROR, 2-69
TEXEC, 2-69
TOPEN, 2-58
TREJECT, 2-45
TRELACK, 2-56
TRELEASE, 2-55
TRETRACT, 2-47
TUNBIND, 2-59
TUUNBIND, 2-36

I

ICMP message arrives, C-8

indications
additional data, 2-50
type of data, 2-51

initiations
abortive release, 2-54
connection, 2-43

Internet protocol address, C-1

invocation of asynchronous exit routines, 3-23

ISO standards, ISO 8072, 1-13

L

listen queue, 2-34

listening
endpoint, 2-46
for connect indications, 2-66

local endpoint
control processing, 2-67
management, 2-27
management (termination), B-16

logger service, 1-29

M

machine-readable endpoint state transition table, A-1

associated protocol actions, C-6
EXIT operand, 3-14, 3-18
OPTCD=SYNC, 3-8
synchronization characteristics, 3-6
TACCEPT, 3-32
TCHECK, 3-10
TCHECK in TPL exits, 3-30
TCLOSE, 2-32
TCONFIRM, 3-33
TDSECT, 2-71, 3-26
TEXLST, 2-71, 2-72, 3-19
TLISTEN, 3-32
TOPEN, 2-30, 3-19
TPL, 2-72
TRECV, 3-9, 3-36
TREJECT, 3-32
TRELEASE, 3-35

manipulation of protocol options, 2-39

modes of operation
asynchronous operation, 3-9

ECBs, 3-11
using external ECB, 3-13
using internal ECB, 3-11

synchronization characteristics, 3-6
synchronous operation, 3-8

error handling, 3-9
operation flow, 3-8

MORE/NOMORE option code, 2-50

multi-address-space, 3-2

multiple address spaces, 3-55

multitasking
in an API environment, 3-54
programs, 3-2
rules for, 3-54

multithreaded
programs, 3-2
servers, 2-46

N

network address, 2-15

network layer, addressing IP address, C-3

NORMAL/EXPEDITE option code, 2-51

O

obtaining basic protocol information, 2-38

Open Systems Interconnection. See OSI., 1-1

opens endpoints, 2-29, 2-58

orderly release
procedure, 2-55
sequence, B-12

Orderly Release Service, 2-11

OSI
connections

connection endpoint, 1-12
transport endpoint, 1-12

Reference Model, 1-5
application layer protocols, 1-9
layer interaction, 1-6

service access points, 1-11
service data units (SDU), 1-12
Transport Service Modes

connectionless-mode protocols, 1-3
connection-mode protocols, 1-3

transport services and protocols, 1-11

P

parameter lists
in-line, 2-12
listforms, 2-12
transport endpoint exit parameters, 3-26
TXP information, 3-26

parameters
common to all requests, 2-13
fixed-length, 2-14
variable-length, 2-14, 2-21, 2-22

partial protocol address, 2-15

passing control of an endpoint, 2-32, 2-33

primitives
T.confirm, 3-31
T.indication, 3-31
T-DISCONNECT.request, 3-7
T-EXPEDITED-DATA.indication, 3-36

process event indications, 2-26

 Index–5

processing service requests, 2-3

protocol
actions initiated by API, C-6

Index–6 Assembler API Concepts

multithreaded servers, 2-8
single-threaded servers, 2-8

service

2-45

TADDR service, 2-59

address
domain type, C-1
network layer IP address, C-3
partial, 2-15
structure, C-1
transport layer port numbers, C-2

event exits, 3-31

protocol-dependent disconnect reason codes, C-1

protocols
actions associated with API macros, C-6
application layer protocols, 1-9
events resulting In API activity, C-7
IEEE 802.X series, 1-10
manipulation of options, 2-39

R

reason codes, C-1

receives
connect indication, 2-44
expedited data, C-4
incoming datagrams, 2-62

recovery action codes, 3-50

rejection, connection indication, 2-45

relationship Independence, 2-2

requesting association-mode service, 2-64

response primitive, 2-3

retraction of listen request, 2-47

retrieve addresses, 2-59

S

sample assembler application program, E-1

SDU, service data units, 1-12

send
expedited data, C-4
outgoing datagrams, 2-61

server, 2-7

server mode

functions
TCONNECT, 2-65
TINFO, 2-38
TLISTEN, 2-66
TRECVFR, 2-62
TSENDTO, 2-61
TUSER, 2-41

parameters, 2-11
request modes

asynchronous, 2-3
synchronous, 2-3

request processing, 2-3
requests, 2-11, 2-69

Service Data Units (SDU), 1-12

setting the TPL inactive, 3-17

Simple Mail Transfer Protocol. See SMTP., 1-9

simultaneous disconnects, B-15

single-threaded servers, 2-44

SMTP, simple mail transfer protocol, 1-9

state
transition tables, A-2
transitions, 2-75, 2-76
transitions for connection-mode service, 2-76
variable, A-1

synchronization characteristics
of macro instructions, 3-6

synchronization modes, 3-17

synchronous
error recovery

exit routines, 3-37
SYNAD/LERAD errors, 3-39

exit routines, 3-20
coding procedures, 3-21
example, 3-22
register information, 3-20

mode, B-2
operation, 3-8

error handling, 3-9
operation flow, 3-8

T

TACCEPT function, acceptance of connect indication,

 Index–7

server connect sequence (accepted), B-6
server connect sequence (rejected), B-7
simultaneous disconnects, B-15

transport layer
address <bul> port numbers, C-2
addressing, 1-26
destination transport user, 1-29

task synchronization, 3-2

TBIND macro, 2-34

TCHECK control function, 2-68

TCLEAR
function, 2-55
return disconnect information, 2-54

TCLOSE macro, 2-32

TCONNECT
function, 2-43
service function, 2-65

TCP
connection model, 1-18
data arrives (TCP/UDP), C-7
data transfer model, 1-20
RESET, C-8
Transmission Control Protocol, 1-10
transport service, 1-21

TDISCONN function, 2-54, 2-55

TDSECT macro, 2-71

TELNET, 1-9

termination, connectionless-mode endpoint, 2-59

TERROR control function, 2-69

TEXEC control function, 2-69

TEXLST
exit routines, 3-18, 3-19
macro, 2-71, 2-72

TIB, 2-39

time-sequence diagram
abortive disconnect sequence, B-14
client connect sequence (accepted), B-4
client connect sequence (rejected), B-5
CLTS

datagram error sequence, B-11
receive data sequence, B-9
send data sequence, B-10

COTS
receive data sequence, B-8
send data sequence, B-9

initialization, B-3
local endpoint management, B-3
local endpoint management (termination), B-16
orderly release sequence, B-12

TINFO service function, 2-38

TLISTEN
function, 2-44
service function, 2-66

token bus, 1-4

token ring, 1-4

TOPEN
function, 2-58
macro, 2-30

TOPTION service, 2-39

TP, 2-2

TPL
common prefix, 2-19
completion exit, 3-30
exit routines, 3-11
return codes, 3-48

TPL macro, 2-72

Transmission Control Protocol (TCP), 1-10

transmitting data, C-3

transport
address, 2-15
endpoint

exit parameters, 3-26
interface, B-1

data unit, 2-53
protocols

transport service provider, 1-11
transport service user, 1-11

provider, 2-23, B-1
service

access point, 2-6
data unit, 2-53
parameter list, 2-11, 2-17
provider, 2-2
user, 2-2

services
transport service provider, 1-11
transport service user, 1-11

user, 2-7
user data, 2-15

expedited data, 2-49
normal data, 2-49

Transport Information Control Block(TIB), 2-39

directory service, 1-29
services

connection mode, 1-14
connectionless mode, 1-14
Connectionless Transport Service (CLTS),
1-24
Data Transfer, 1-18

expedited data transfer service, 1-20
TCP data transfer model, 1-20

endpoint states and service sequence, 1-22
logger service, 1-29
network classes, 1-28
Transport Connection Establishment, 1-16,
1-18
Transport Connection Release, 1-21

user datagram protocol (UDP), 1-10

Transport Service Access Points (TSAP), B-1

TRECVFR service function, 2-62

TREJECT function, 2-45

TRELACK function, 2-56

TRELEASE function, 2-55

TRETRACT function, 2-47

TSAP, transport service access point, B-1

TSDU, transport service data unit, 1-20

TSENDTO service function, 2-61

TTCPCP, sample application program member, E-1

TTCPMSGS sample application program member,
E-1

TTCPR sample application program member, E-1

TTCPRST sample application program member, E-1

TTCPT sample application program member, E-1

TU, 2-2

TUNBIND
function, 2-59

TUNBIND function, 2-36

TUSER service function, 2-41

U

UDP datagrams, C-3

unbind
addresses, 2-34
endpoints, 2-36

user data
length, 2-53
parameter, 2-53

User Datagram Protocol (UDP), 1-10

V

variable-length parameters, 2-21, 2-22
transport protocol address, 2-14
transport protocol options, 2-14
transport user data, 2-14, 2-15

Index–8 Assembler API Concepts

	Assembler API Concepts
	Contents
	Chapter 1: API Overview
	References
	Transport Service Modes
	Background
	ARPANET
	TCP/IP
	Corporate Networking Technology

	OSI Reference Model
	Open Systems Interconnection
	The Seven Layer Model
	Layer Interaction

	Internet Protocol Suite
	Major Application Layer Protocols

	OSI Terminology
	Transport Services and Protocols
	Service Access Points (SAP)
	Connections
	Primitives
	Service Data Units

	Transport Layer Services
	Modes of Service
	Connection-Oriented Transport Service (COTS)
	Transport Connection Establishment
	Data Transfer
	Transport Connection Release
	Endpoint States and Service Sequence
	Connectionless Transport Service

	Transport Layer Addressing
	Internet Domain Addressing
	Connecting to an Internet Address

	Chapter 2: Concepts and Facilities
	API Organization
	Relationship Independence
	Service Request Processing
	API Components

	Concepts and Terminology
	Modes of Service
	Endpoints and Access Points
	Connection Strategies
	Data Transfer Modes
	Disconnect and Orderly Release
	Service Requests and Parameters
	Transport Protocol Options
	The Transport Service Parameter List

	Establishing a Session with a Transport Provider
	Session-Level Services
	Application Programs and Transport Users

	Connection-Mode Service
	Local Endpoint Management
	Opening and Closing Endpoints
	Opening an Endpoint
	Closing an Endpoint

	Passing Control of an Endpoint
	Binding and Unbinding Addresses
	Retrieving Protocol Addresses
	Miscellaneous Functions
	TINFO—Getting Basic Protocol Information
	TOPTION—Manipulating Protocol Options

	TUSER—Specifying or Changing an Endpoint User ID
	Connection Establishment
	TCONNECT—Initiating a Connection
	Single-Threaded and Multithreaded Servers
	Single-Threaded Servers
	 Multithreaded Servers

	Data Transfer
	TLI vs. Sockets Mode
	Connection-Oriented Transport Service (COTS) Data Transfer Functions
	Transporting User Data
	Sending and Receiving Data
	User Data Length

	Connection Release
	TDISCONN—Initiating Abortive Release
	TCLEAR—Return Disconnect Information
	Using TDISCONN and TCLEAR During Connection Establishment
	TRELEASE—Orderly Release Procedure
	TRELACK—Checking for Orderly Release

	Connectionless-Mode Service
	Local Endpoint Management
	TOPEN—Opening an Endpoint
	Using TBIND with Connectionless Mode
	Terminating a Connectionless Mode Endpoint
	Using TADDR to Retrieve Addresses
	Specifying Protocol Options

	Data Transfer

	Connectionless Service with Associations
	ASSOC—Requesting Association-Mode Service
	Establishing Client Associations
	Establishing Server Associations

	Local Endpoint Control
	TCHECK
	TERROR—Abnormally Completed Service Requests
	TEXEC—Executing a Fully-initialized TPL
	TSTATE—Return Endpoint State

	Declarative Macro Instructions
	The APCB Macro Instruction
	The TDSECT Macro Instruction
	The TEXLST Macro Instruction
	The TEVNTLST Macro Instruction
	The TPL Macro Instruction

	Endpoint States and Function Sequences
	Endpoint Functions
	Endpoint States
	State Transitions
	Function Sequences

	Chapter 3: Program Synchronization and Control
	Task Synchronization Requirements
	Typical Processing Flow

	Modes of Operation
	Operating Mode Differences
	Synchronous Operation
	Asynchronous Operation
	Asynchronous Operation Using ECBs

	Mixing Synchronization Modes

	Specifying and Using Exit Routines
	How Exit Routines Are Specified
	TPL Exit Routines
	TEXLST and TEVNTLST Exit Routines

	How Exit Routines Are Called
	Synchronous Exit Routines
	Asynchronous Exit Routines
	Exit Routine Parameter List

	How Exit Routines Are Used
	Exit Routine Summary
	Register Usage Summary
	TPL Completion Exit
	Protocol Event Exits and ECBs
	SYNAD/LERAD—Synchronous Error Recovery Exits
	TPEND Exit Routine or ECB
	APEND Exit Routine
	Deriving Context in Exit Routines

	Handling Errors and Special Conditions
	Macro Information
	General Return Codes
	Conditional Completion Codes
	Recovery Action Codes
	Specific Error Codes
	Diagnostic Codes
	AOPEN and ACLOSE Errors

	Application Program Organization
	Multitasking Operation Rules
	Multiple Address Spaces
	24-Bit and 31-Bit Addressing

	Appendix A: Endpoint State Transitions
	Defined Endpoint States
	The State Transition Tables
	Endpoint States for TSCLOSED, TSOPENED, and TSDSABLED
	Endpoint States for TSENABLD, TSINCONN, and TSOUCONN
	Endpoint States for TSCONNCT, TSINRLSE, and TSOURLSE

	Appendix B: Time-Sequence Diagrams
	Diagram Labeling
	
	Synchronous and Asynchronous Modes
	Completion and Error Events

	Diagrams
	Local Endpoint Management (Initialization)
	Client Connect Sequence (Rejected)
	Server Connect Sequence (Accepted)
	Server Connect Sequence (Rejected)
	COTS Receive Data Sequence
	COTS Send Data Sequence
	CLTS Receive Data Sequence
	CLTS Send Data Sequence
	CLTS Datagram Error Sequence
	Orderly Release Sequence
	Abortive Disconnect Sequence
	Simultaneous Disconnects
	Local Endpoint Management (Termination)

	Appendix C: Using TCP and UDP Services
	Protocol Address
	Transport Layer Address—Port Numbers
	Network Layer Addressing—IP Address

	Expedited Data
	
	Sending Expedited Data
	Receiving Expedited Data

	Disconnect Reason Codes
	API-Initiated Protocol Actions
	Protocol Events Resulting In API Activity
	Initial SYN Arrives (TCP)
	SYN/ACK Arrives in Response to a Previously Sent Initial SYN(TCP)
	Data Arrives (TCP/UDP)
	Acknowledgment for Sent Data Arrives (TCP)
	Urgent Data Arrives (TCP)
	ICMP Message Arrives
	A TCP RESET Arrives
	A FIN Arrives (TCP)

	Appendix D: API Data Sets
	Data Sets

	Appendix E: Sample Assembler Program
	Sample Program

	Index

	booklist:

